Penetrating Computer Systems & Networks

CSH6 Chapter 15
“Penetrating Computer Systems & Networks”
Chey Cobb, Stephen Cobb & M. E. Kabay

Multiple Factors in System Penetration

- System security is much more than technical safeguards
- Human behavior key weakness in all systems
 - Social engineering attacks exploit normal human / social expectations
- Organizational culture critically important
 - Clear explanations of reasons behind policies support security rules
 - Reward – not only punishment – helpful
 - Consistent monitoring and enforcement required for effectiveness and legal protection
- Technical safeguards must constantly evolve and adapt to changing threats

Nontechnical Penetration (1): Social Engineering

- Lying
- Impersonation
- Intimidation
- Subversion
- Bribery
- Seduction
- Extortion
- Blackmail
- Insiders
- Wide range of human targets

Nontechnical Penetration (2): Incremental Information Leveraging

- Collecting information from wide range of sources
- Potentially long time for collection
- Piecing together aggregated valuable information; e.g., internal jargon
- Making inferences about security implications
- Applying information for penetration
- E.g., Mitnick used internal bits and pieces to build personae for impersonation in social engineering

Technical Penetration Techniques

- Data Leakage
- Intercepting Communications
- Breaching Access Controls
- Spying
- Penetration Testing, Toolkits & Techniques
- Basic Exploits
- Penetration via Web Sites
- Role of Malware and Botnets
Data Leakage

- **Definition:**
 - Imperceptible transfer of data without authorization
 - Concealed, hard-to-detect copying or transmission of confidential data using *covert channels*
 - Alternative channels can be entirely independent of normal system (e.g., photography, human memory)
 - Impossible to stop transfer of information from secure to non-secure region
 - E.g., encrypted messaging, steganography
- **Implications:**
 - Data loss from lost / stolen unencrypted portable devices
 - Copying to portable devices (laptops, USB flash drives, CDs, DVDs, iPods....)

Intercepting Communications

- **Transmission Media**
 - Asynchronous links
 - Microwave
 - Leased lines
 - Fiber optics
 - Satellites
 - Emanations

- **Asynchronous Links**
 - Easy to tap
 - Twisted-pair accessible via alligator clips, splices
 - Most cabling clearly labeled, identifiable
 - Wiring closets, patch panels unlocked
 - Defenses
 - Shielded cables
 - Locked cabinets
 - Encryption of data stream

- **Microwave**
 - Predominant method for long-distance phone lines
 - 2/3 phone calls
 - Line-of-sight: towers spaced every 25 miles
 - Vulnerable to denial-of-service attacks (topple towers)
 - Footprint expands over distance
 - Can intercept data, decode using standard equipment
 - But volume of high-bandwidth lines makes specific taps difficult
 - Encryption the only protective mechanism

- **Leased Lines**
 - Phone lines normally switched
 - Can fix circuit in place, improve quality
 - Used for critical, high-volume data communications
 - Increased vulnerability to tapping
 - Beware *off-premises extension*
 - Easy to order extension without authorization
 - Use phone services of victim without paying
 - Check your phone bills for unauthorized extensions
Fiber Optics
- High bandwidth
 - Hard to make sense of enormous data flows
- Expensive to tap
 - But folding denuded cable allows part of light to be captured without breaking cable
 - For high-security applications, use armored cable
- Identify breaks, taps using time-domain reflectometry
 - Light travels 0.3m/μsec
 - Measure time to reflect from break, interference

Satellites
- Geosynchronous satellites appear to hover over specific spot
- Can tap into uplink, override broadcast data
- Can tap downlink
 - 50 mile diameter footprint
 - Ordinary electronic gear
 - But volume considerations make tapping difficult to use
- Encryption is only defense

Emanations
- Electronic equipment radiates carrier waves
- Operations of CPU, display, keyboard, modems modulate the carrier
- Can demodulate captured emanations
 - Demonstration using shortwave radio
 - Tuned to 25m band (~12.4MHz)
- Van Eck Freaking
 - Reconstituting appearance of VDT
 - Said to use $200 worth of simple electronic parts
- TEMPEST US DoD standard for minimizing emanations
 - Hardware (x cost by 10)
 - Software (generates lots of noise)

Protocols
- Packet-switching networks
- LANs
- Wireless LANs
- Spread-spectrum LANs

Packet-Switching Networks
- Used in telephony, data communications
 - X.25 (Tymnet, Telenet, Datapac)
 - TCP/IP
- Generically called datagram protocols
- Split messages into packets
 - Headers of packets include origin, destination, sequence number
- Routers determine which path to use msec by msec
 - Result of local traffic on outbound potential routes for packet
- Interception possible but generally useless except at end-points
 - Huge volumes
 - Only some of the packets of any given message likely to be captured

LANs
- Also datagram protocols – use packets
 - But architectures are generally rings, buses or stars
 - Know where to look for data stream
- Coaxial or twisted-pair cabling
 - Easy to tap
- LAN IF card (aka NIC = Network Interface Card) generally captures only those packets directed at it
- Network monitors (aka sniffers) a major problem
 - Do not generally announce their presence on network
- Software available to convert any NIC into promiscuous mode
 - Can see any packet, not just those directed at particular NIC
- Enable encryption as best defense
Wireless LANs
- All the vulnerabilities of wired LANs
- Plus emanations, eavesdropping
- Must configure mandatory encryption
- On related topics
 - Be careful not to use pagers as if they are secure: they aren’t
 - Cellular phone calls are not secure
 - Even GSM (European cell phone standard) encryption cracked quickly

See CSH6 Chapter 33 Wireless LAN Security

Spread-Spectrum LANs
- Use electrical system as wiring network
- Split data over many randomly-changed frequencies
- Extremely difficult to tap
- Beware unauthorized nodes
- Invented by actress Hedy Lamarr in 1940 & composer George Antheil

Applications
- Toll fraud
- Voice mail
- E-mail
- Internet
- Intranet
- Extranet
- Firewalls
- Intrusion Detection

Toll Fraud
- Severe problem for businesses
- Use CDAR (Call Detail Accounting Reporting) to stop internal fraud
- Thriving black market in telephone access codes
 - Some poor neighborhoods have had phone booths removed
 - Lines of people waiting to use stolen access codes for cheap overseas calls

Toll Fraud (cont’d)
- Must train staff
 - PBX managers must disable DISA
 - Direct Inward Services Access
 - Allows access to long-distance, external lines
 - Protect PBXs with same security as mainframes, servers
 - Receptionists, secretaries, employees: Do not allow access to outside line by strangers

Voice mail
- Easy target
 - Canonical passwords on voice-mailboxes
 - Former employees use old passwords
 - Sensitive information
- Attacks have included
 - Espionage
 - Sabotage
E-mail
- Primary problem is concept of privacy
- Generally e-mail is difficult to intercept in transit
- Loss of control over published information
- Damage to organization’s reputation
- Waste of time if uncontrolled

Internet
- Most important communications component for most organizations today
 - Intranet: TCP/IP network for internal use
 - Extranet: TCP/IP network for clients or partners
- Highly vulnerable
 - IPv4 has no packet authentication – therefore spoofing easy
 - Many weaknesses in software

Penetration Tools
- Almost all successful attacks exploit known vulnerabilities
 - Most vulnerabilities used have been known for years
- Port & vulnerability scanners
- Buffer overflow exploits very common
- War dialers used to be important to locate modem lines
- Brute-force password crackers useful if system allows access to password file for offline testing
- Rainbow tables store precalculated encrypted values for testing against password files

Firewalls
- Key component of today’s security architecture
- Devices that filter inbound and outbound packets
- Apply rules reflecting policy
- Useless to install firewall without policy – generally pass-through

Intrusion Detection
- No security perimeter should be expected to reach perfection
- Must be able to spot intrusions quickly
- Essential component of effective security
- Allows measured, planned response
 - Stop or monitor, collect evidence
 - Valuable in forensic work

Breaching Access Controls
- Brute-force attacks
- Demon (war) dialing
- Exhaustive search
- Keypause issues
- Login speed
- Scavenging RAM
- Scavenging swap & cache files
- Dictionary-based guessing
- Stealing
- Scavenging (including discarded media)
Spying
- Laser interferometry (bouncing lasers off windows)
- Shoulder surfing
- War-driving
- Keyloggers
- Exploiting insecure public networks (e.g., hotels) – see Fig 15.2

Penetration Testing, Toolkits & Techniques
- System administrators and security experts commonly use vulnerability analysis and automated penetration tools to test system security
 - So do criminal hackers
- Scanners serve several functions
 - Laying out network architecture
 - Determining which protocols are in use
 - Mapping firewall rule sets
 - Determining which operating systems are in use

Basic Exploits (1)
- Buffer Overflow
 - Most common exploit of poor coding
 - Insert data beyond expected end of input
 - Interpret extra data as instructions
- Password Cracking
 - Steal encrypted password file
 - Run crack program on other computer
 - Or try rainbow tables of predetermined passwords vs one-way encrypted codes

Basic Exploits (2)
- Rootkits
 - Once system has been cracked, apply rootkit
 - Ensures that criminal can re-enter system at will
 - Installs a backdoor
 - Hides itself from discovery (invisible, wipes log records….)
- Trojan Code: often part of rootkits
- Back Doors: beware utilities that have been converted to Trojans with back doors

Penetration via Web Sites
- Many Web sites are interactive: receive user input such as name, e-mail address etc.
- Attackers enter long or random inputs ("fuzzing") to see what happens
- Can cause buffer overflows and improper actions by Web server ("executing arbitrary code")
- Use of special characters in input strings (., /, \, metacharacters)
- Server-side includes – special commands interpreted by Web server – including exec for execution of code

Role of Malware and Botnets
- Viruses and worms may communicate confidential data to external Internet addresses
- Bots are malware that wait for instructions from controllers
- Botnets are collections of infected computers
- Botmasters can tell thousands of infected computers to launch attacks (especially DDoS)
- Google research suggests that 10% of all Web pages are infected with malware that can infect target computer upon viewing
Political and Legal Issues

- Exchange of system penetration information
 - Should such information be exchanged or not?
 - InfraGard is specific organization with FBI vetting of members to facilitate information sharing
- Full disclosure
 - How should vulnerability information be disclosed?
 - Should it be sent to manufacturer only?
 - Or posted in public to pressure / shame firms?

Now go and study