

CSH6 Chapter 17
"Mobile Code"
Robert Gezelter

Copyright © 2014 M. E. Kabay. All rights reserved

Topics Introduction to Mobile Code Mobile Code from the Web Motivations and Goals Design and Implementation Errors CSH6 Chapter 17

Mobile Code Defined

- Instructions delivered to remote computer from outside an enclave
- Enclave is system under unitary control by single authority
- Dynamic execution (execution on demand)
- > Fundamental problems
 - ■Mobile code may perform unauthorized functions
 - □Growing spectrum of devices using mobile code
 - √PDΔs
 - ✓ Mobile phones
 - ✓ Tablets

Copyright © 2014 M. E. Kabay. All rights reserve

Mobile Code from the WWW

- ➤ Definition
 - □Executable code delivered by Web server
 - □Or by e-mail
 - □ For execution on client computer
 - □ Not including HTML or XML

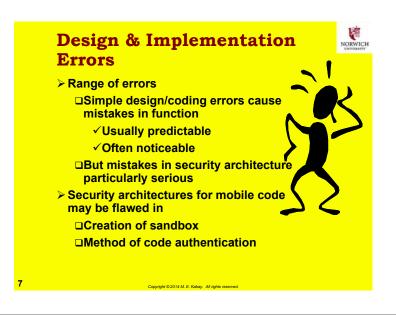
Mobile Code

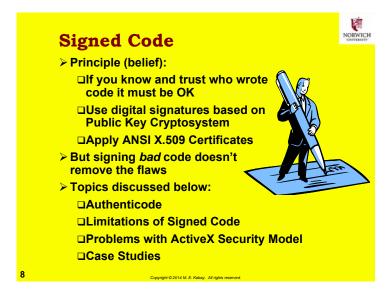
- Typical languages
 - □ActiveX
 - □Java
 - □JavaScript
- ➤ Examples of problematic content
 - □HTML-enabled e-mail with embedded code
 - □Pop-ups in browsers
 - ✓ May access unexpected Web pages
 - ✓ Julie Amero, CT teacher, convicted of using classroom computer for inappropriate content due to popups

Copyright © 2014 M. E. Kabay. All rights reserve

Effects of Mobile Code

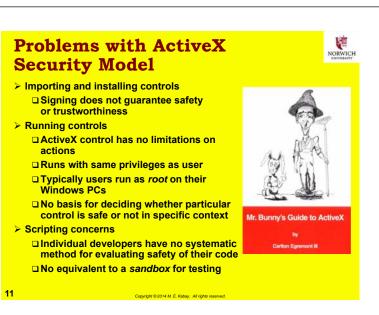
- System / application crashes
 - □Obvious effects include
 - ✓ Denial of service
 - ✓ Corruption (integrity problems)
- > Covert effects more dangerous
 - □Access to e-mail addresses → spam
 - □Keyloggers
 - □Rootkits
- Hephrati case in Israel (2005) showed how mobile code could be used for industrial espionage
 - □Varda Raziel-Jacont & Amnon Jacont's MS for "L is for Lies" appeared on Internet sites
 - □Former son-in-law Michael Hephrati responsible using implanted mobile code

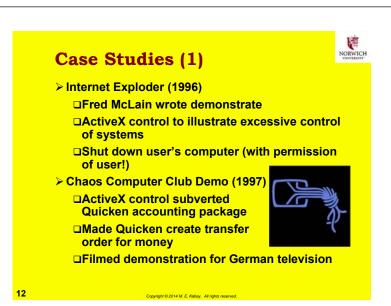

Copyright © 2014 M. E. Kabay. All rights reserved.


Motivations & Goals

- ➤ Shift in motivations
 - □Pranks → vengeful → vindictive → criminal
- ➢ Goals differ
 - □Amusement
 - □Blackmail
 - □Corporate espionage
 - □Financial fraud/theft
- ➤ Misappropriation of computer resources
 - □Creation of botnets
 - □Applications to DDoS & spam
 - □Involvement in information warfare

6


right © 2014 M. E. Kabay. All rights reserved.



Case Studies (2)

- VeriSign Issues Certificates to Imposters (2001)
 - □Class 3 Digital Certificates for signing ActiveX controls
 - □Issued to someone impersonating MS employee
 - □Allowed signing code as if it came from MS
- ▶ Problems
 - □No Certificate Revocation List (CRL)
 - □Would need to verify date of every MS certificate to identity fraudulent issued ones
- Caution to avoid overreacting
 - □1st error discovered in >500.000 issued certificates

Restricted Operating Environments

> At simplest level, users should not execute code that affects entire system - restricted to their own processes

□ Process is unique instance of execution of particular code by specific user on particular machine at specific instant

- Concept of privileges determines what a process can accomplish
 - □ Supervisory or root privileges allow full access
- > Restricted operating environment
 - □ Developed since earliest multi-user systems
 - ✓ MULTICS, OS/360, UNIX...
 - □ See CSH6 Chapter 24, Operating System Security
 - □ Sandbox is an example of restricted operating

Java

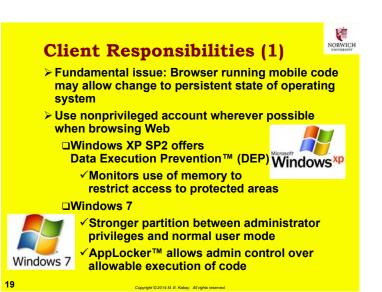
- Programming language developed by Sun Microsystems
 - □Platform independence
 - □Typically used in Web browser
- ➢ Includes virtual machine (JVM)
 - □Plus Java Run Time Environment Language
- Code known as applets
 - ■May be signed
 - □Restricted access to system resources
 - √ Known as the Java sandbox
- But bugs have allowed Java applets to leave sandbox on occasion

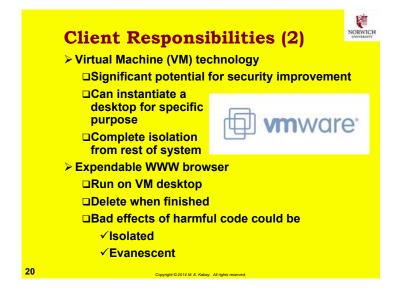
Asymmetric & Transitive Trust

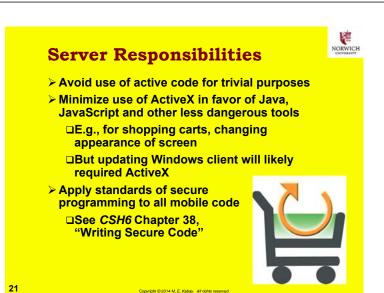
- Asymmetry in power can cause opportunity for mass infection
 - □E.g., large customer can force small suppliers to conform to its standards
 - □Force use of unsafe mobile code
 - □Can resist damage by enforcing principle of least privilege in execution of all code
- > Transitive trust results from assumption that trusted sites must have trustworthy code
 - □Essential to enforce tight security on all mobile code regardless of source
 - □ ActiveX security model thus fundamentally flawed because it relies solely on transitive trust

Misappropriation & Subversion

- Mobile code targets have changed
 - □From individual target machines □To entire populations of targets
- > John Schiefer ("acidstorm")
 - □ Caught by Bot Roast II, FBI operation against botnet operators in 2007
 - □250,000 systems infected with spybots for capture of userID and passwords
 - ✓ Used to subvert PayPal & other accounts
 - □150,000 systems infected to support Dutch criminal Internet advertising company
 - □Pled guilty
 - □Sentenced to 4 years in US federal prison


Multidimensional Threat




- ➤ Signing code leaves other issues
 - □Integrity of signing process
 - □Integrity of the PKI

 - □Safety or validity of code not addressed
- > Individual controls or applets may function correctly BUT
 - □Interactions that were not or could not be tested may cause failures
 - □E.g., attempts to use same Windows registry key in conflicting ways
 - □Complexity of operating environment may preclude provable safety

