

Biometrics

CSH6 Chapter 29

"Biometric Authentication"

Eric Salveggio, Steven Lovaas,
David R. Lease, & Robert Guess

Topics

- >Introduction
- **≻Importance of I&A**
- > Fundamentals & Applications
- >Types of Biometric Technologies
- **≻Types of Errors & System Metrics**
- Disadvantages & Problems
- > Recent Trends in Biometric Authentication

Introduction

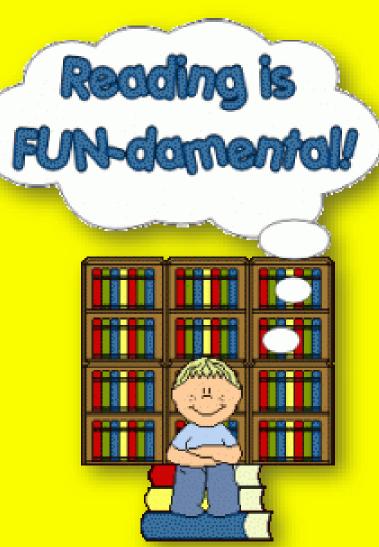
- Biometrics = automated recognition of people
 - □Static or physical (fingerprint, face, iris,...)
 - □Dynamic (physiological or behavioral) (voice, speech, typing patterns, gait, brain waves ...)
- Growing acceptance
- > Improvements
 - **□Security**
 - **□**Convenience
 - □Portability
 - **□Costs**

Authentication is based On something you

- Know
- Have
- Are (static biometrics)
- Do (dynamic biometrics)
 that others don't / aren't / cannot.

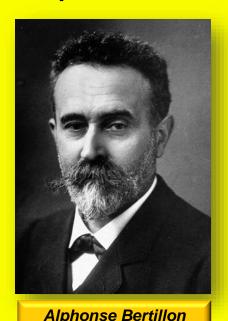
Importance of I&A

- Prerequisite to security & efficiency
 - □Exclude intruders
 - **□Allocate resources**
 - □Authorize access modes


- Identification by person not scalable for computing systems
 - □Voice, appearance, gait...
 - □Inefficient & inaccurate
 - □Foolable using social engineering
 - □Impossible to manage remote access

Fundamentals & Applications

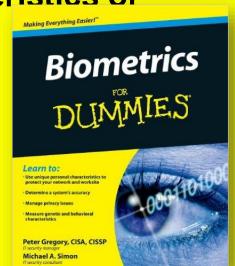
≻Overview & History


- Properties of Biometrics
- >IA&A
- > Application Areas
- ➤ Data Acquisition & Presentation

Overview & History

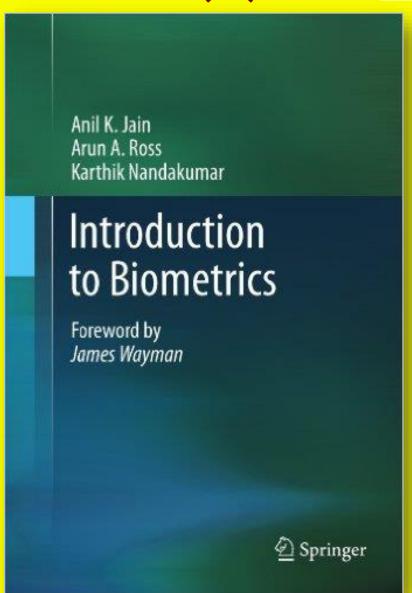
- Non-automated biometrics
 - □Biological systems recognize others as individuals or as members of species/group
 - □ Human beings routinely recognize each other using face, voice, body appearance...
- > Potters in Assyria used thumbprints (300 BCE)
- > Handwritten chops (signatures) in China
- ➤ Fingerprints used in Tang Dynasty (618-906 CE)
- Alphonse Bertillon introduced anthropometry (1882)
- Edmond Locard proposed fingerprint analysis (1918) using 12 specific points –
- > still used today

Properties of Biometrics (1)


- ➤ Focus on "automatic identification of a person based on his or her physiological or behavioral characteristics."
- > Biometric can be noun or adjective

> Currently using unique characteristics of

- **□Fingerprints**
- ☐ Hand geometry
- **□Face**
- **□Iris**
- □Voice
- **□Signature**


□But gummy bears are a problem!

Properties of Biometrics (2)

- > Requirements:
 - **□Universality**
 - **□Uniqueness**
 - **□**Permanence
 - **□Collectability**
 - □Acceptability
- Additional factors in evaluation of biometrics
 - **□**Performance
 - **□Circumvention**

IA&A

- Identification is allocation of a unique identifier to a person or a system
- Authentication is the binding of identifier to user of that ID
- Verification is process of establishing whether authentication offered is correct
- Biometrics can serve for identification & authentication in one process
- atomatically leads to
 - □ Identification through a biometric automatically leads to authentication
 - □Except in case of identical twins or other identical 'tuplets (effectively genetic clones)

Application Areas

NORWICH UNIVERSITY

- Security (logical access systems)
 - □Access to computer systems, networks, data storage...
- Facilities access (physical access systems)
 - □Access to buildings, rooms, cabinets, safes...
- > Ensuring uniqueness of individuals
 - □Prevent double-dipping in public sector
- Public identification systems
 - □Identifying terrorists, criminals
 - □Or forensic applications such as dental records
- > Data acquisition and presentation (see next slide)

Data Acquisition & Presentation

- > Enrollment
 - □Initial data collection and processing
 - □Templates are mathematical representation of biometric information
 - √ Think of it as a kind of hash function
 - ✓ Little interoperability among systems
- Presentation
 - □How user provides system with new data for comparison with template
 - □E.g., scanners, cameras, microphones
 - □Typically do not store original data (e.g., face images) but only template

Types of Biometric Technologies

- >Finger Scan
- Facial Scan / Recognition
- Hand Geometry
- **≻Iris Scan**
- Voice Recognition
- **➤ Other Biometric Technologies**

Finger Scan (1)

- Most widely deployed technology
 - □Even excluding police fingerprinting
- > Typically scan a single finger on one hand
 - □But can enroll more than one finger in case there's a Band-Aid™ in the way – or no finger

after an amputation(!)

- Advantages
 - □Costs low
 - □Easy to use
 - □Low error rates
 - **□Quick to process**
 - □Easy to deploy (but some resistance due to association with law enforcement)

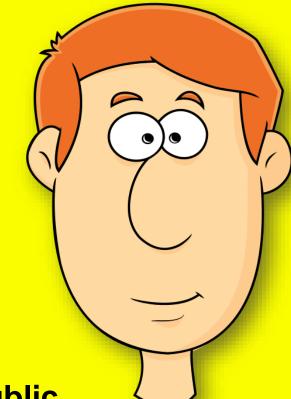
Finger Scan (2)

NORWICH UNIVERSITY

- Wide access to methods for defeating biometric finger scanning technology
 - **□Dummy latex finger**
 - □Gummy Bears[™] with fingerprints etched on surface
 - ■Manipulation of scanner to raise latent print of previous user
 - □Use of detached real amputated finger (eeeeuuuuwww)
- Countermeasures
 - □Force use of more than one finger
 - □Use thermal and moisture sensors to discount fake or dead fingers
- Problems with dry/wet fingers

Facial Scan / Recognition (1)

Used by most people every day – naturally


□May be more acceptable than other biometrics to

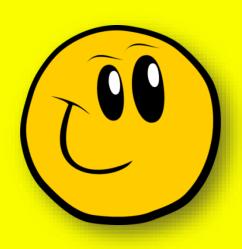
some non-technical subjects

□ Acceptance of individual, open recognition & authentication

- □Well-established database + controllable input conditions = low error rates
- > Covert use for recognition
 - **□Airport scanners**
 - □Crowd scanners
 - □Strongly opposed by much of public

Accuracy can be terribly low; e.g., >50% error rate in trials at Palm Beach FL Intl Airport

Facial Scan / Recognition (2)


Weaknesses

- False matches (acceptances)
 - □Common for identical twins
 - ■May be exploited by impersonators

- □Hairstyle, makeup, facial hair, eyeglasses
- □Changes in body weight
- □Age-related face changes
- Perceived threat to privacy
 - □Public dislike concept of covert facial recognition
 - ■Most people do not know that pictures are not stored – only templates

Hand Geometry (1)

- Distinctive aspects of hand
 - □Height & width of hand & fingers
 - □Recognition Systems Inc (RSI) scanner
 - **✓90 different measurements**
 - √3-4 enrollments
 - ✓ Length, width, thickness, surface area
- > Anti-exploit methods against fakes and amputations
 - **□Temperature sensors**
- > Used exclusively for verification, not identification
- ➤ Mostly for physical access & time/attendance

Hand Geometry (2)

- Strengths
 - □ Resistant to environmental stresses
 - □Established & reliable
 - □Easy to use
 - □Difficult to defeat
 - □Small template size (store lots of them)
 - □Stable characteristics
 - □High user acceptance / low stigma

- Weaknesses
 - **□Limited accuracy**
 - □Relatively large scanner
 - □ Resistance to touching surfaces (clean freaks)
 - □Difficulties for disabled people
 - □Relatively expensive

Iris Scan

- Unique patterns of color in iris
 - □Even left/right irises of same person differ
 - □Ideal to enroll both eyes– more difficult to spoof
 - □Both I & A
 - □Stable over time but affected by age & disease
- ➤ Highly accurate
 - **□Lowest error rate**
 - □Highest accuracy

- Weaknesses
 - Moderately demanding enrollment & acquisition
 - □Some resistance to have eyes scanned
 - ✓ Physical & psychological
 - □ Affected by lighting conditions
 - □ Problems with eyewear
 - **□Expensive**

Voice Recognition

- Distinctive aspects of voice > Disadvantages
 - □ Pitch
 - □Waveform
 - □Dynamics (amplitude, inflection)
 - □Phonetics (accent)
- Advantages
 - □Can use telephone equipment
 - □Inexpensive & easy to use
 - □Can speak passwords
 - □No stigma generally accepted

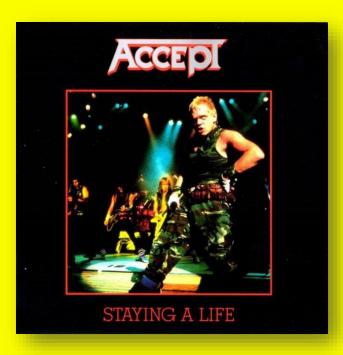
- - □Replay attacks
 - □Low accuracy
 - **□Ambient noise**
 - **□Low-quality capture**
- > Accuracy variable
 - **□Soft/loud speech**
 - □Hoarseness, stuffed nose
 - **□Illness**, aging smoking...

Other Biometric Technologies

- Signature scanning
- > Typing (keystroke) dynamics
 - □Interval between keystrokes on passphrase
- Gait patterns
- Lip movements
- Retinal scanning
 - □ Lack of user acceptance
 - □High cost
 - □Difficult / painful acquisition
 - **□Expense**

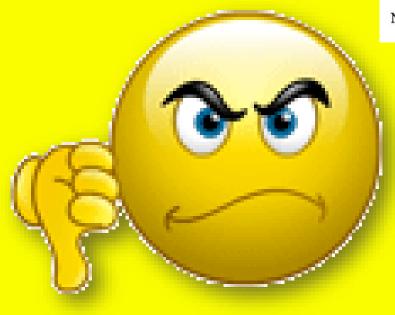
- > Future possibilities
 - □Body odor (⊗)
 - **□Skin reflectance**
 - □Ear shape
 - □Brain waves

Types of Errors & System Metrics


- **≻**False Accept
- **≻False Reject**
- **≻Crossover Error Rate**
- > Failure to Enroll
- >Transaction Time

False Accept

- Imposter will be accepted
- > AKA
 - □False match
 - □ False positive
 - □Type 1 error
- > Importance depends on context
 - □Bank / root access high concern
 - □ Facial recognition in casinos vs card-counters low concern


False Reject

NORWICH UNIVERSITY

- Legitimately enrolled user NOT accepted
- > AKA
 - □False nonmatch
 - □False negative
 - □Type 2 error

- Can occur because of
 - □Changes in user's biometric data
 - □Environmental changes
 - □ Problems with sensors
- Biometric systems typically more susceptible to false rejects than to false accepts

Crossover Error Rate (CER / EER)

- ➤ The rate at which Type 1 and Type 2 errors become equal is called the CER or EER
- Power of the test: Rates of Type 1 & Type 2 errors are inversely affected by change
 - □As we reduce the probability of false accept (Type 1 error), we tend to increase the probability of false reject (Type 2 error)
 - □As we reduce the probability of false reject (Type 2 error), we tend to increase the probability of false accept (Type 1 error)
- > Used as a measure of strength: the lower the rate, the stronger the authentication
- > Generally used to compare biometric systems

Failure to Enroll (FTE)

- User cannot complete enrolment into biometric authentication system
 - □Physical disability

□Static or dynamic biometric profile less distinctive than

required by system

- Can be significant problem
 - "Internal, employee-facing deployments"
 - □Increased security risks
 - □Increased system costs

Transaction Time

- > How long it takes to match data input to reference sample
- Long delays problematic
 - □ Processing queues of employees through chokepoint

□Small delays can add up to significant pile-ups & delays

for entire queue

- □Leads to employee resistance
- □Security guards can waive identification & authentication if lines become intolerable

Disadvantages & Problems

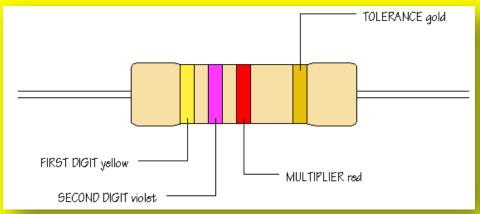
- > General Considerations
- ➤ Health & Disability
- ➤ Environmental & Cultural
- >Cost
- ➤ Attacks on Biometric Systems
- > Privacy Concerns
- >Legal Issues

General Considerations (1)

- > Errors inevitable
- False accept / match / positive (Type 1 error)
 - □Particularly serious
 - □Threatens security by admitting unauthorized personnel
- > False reject / nonmatch / negative (Type 2 error)
 - □ Reduce productivity & efficiency
 - □Increase costs

General Considerations (2)

- > Define acceptable (reasonable) error thresholds
- Some systems almost impervious to fraud
 - □Iris scans
- Others easy to defeat
 - □Face: makeup, glasses, hairstyle
 - □Fingerpints: gelatin/rubber fake fingers
- ➤ Increased training required cf badges/passwords
- > Hypersensitivity to nonstandard data capture


General Considerations (3)

- Resistance to biometric I&A
 - □Privacy
 - **□Intrusiveness**
 - **□Safety/cleanliness**
 - □Fear of eye scans
- > Religious objections

- □Some see eye as special soul-related organs
- Have backup methods available to avoid serious personnel problems

Health & Disability

- > Arthritis, other deforming disease
 - □Interfere with data capture in enrolment
 - ✓ E.g., hand geometry
 - ■May prevent effective physical positioning for data entry during I&A
 - ✓ Neck injuries, back problems, broken limbs/hands
- > Sensitivity to environmental stress
 - □Bright light of iris/retinal scans may be intolerable for photophobic people
- Tremor can interfere with many biometrics (both enrolment and data entry)
- > Variations in physical size can interfere
 - □Too big, too small, too tall, too short....
- > Speech: too slow/fast, loud/soft, laryngitis,...
- Excessive skin moisture/dryness,...

Biological Variations

- > Fingerprints
 - ■Missing
 - □Damaged (calluses)
 - □Chemicals
 - □Scarring
- > Iris scans
 - **□** Dark irises
 - □Retracted pupils (e.g., drug use)
- > Aging effects
 - > Skin
 - Face shape
 - > Voice

- Preventing discrimination
 - □ American with Disabilities
 Act precludes adverse
 effects on
 - ✓ Disabled
 - **√**||||
 - **✓ Ethnic minorities**
 - **✓ Elderly**
 - **√**...
 - □ Resentment if
 - √ Takes much longer
 - √ Causes repeat scans
 - □Be sure to have backup I&A methods on hand

Environmental & Cultural Factors

- > Changes in appearance can influence face recognition
 - □Hairstyle
 - □Facial hair
 - □ Headwear
 - □Weight gain / loss
- Voice recognition ambient noise, sore throat
- ➤ Fingerprints: frequent hand-washing – e.g., health-care staff
- > Ambient light
 - **□Face**
 - **□Iris**

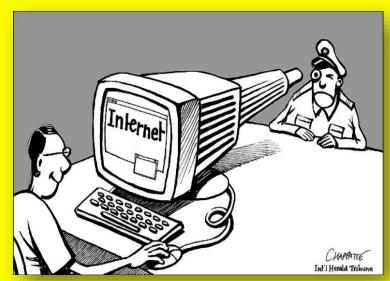
Cost

- Cost falling dramatically in recent years
 - □Fingerprint scanners \$50 or less
 - □But voice-recognition >\$50K
 - **□Minimum costs**
 - √~\$200/user
 - √\$150K or more for mediumsized business
 - □Still major barrier for many organizations
- Lack of widely-accepted standards
- Poor interoperability
- May cope with problems through
 - **□Better training**
 - □Combination with other I&A methods

Attacks on Biometric Systems

- Less vulnerable to attack than other I&A systems
- > Stolen biometric identity serious problem
 - □Cannot easily be canceled & replaced
 - □Difficult to revoke
 - □Long-term usability of stolen identifier
- > Current work on cancelable biometrics
 - □Would include a repeatable modification of the biometric data at each enrolment
 - □Thus limit damage to 1 system only, not all others

Privacy Concerns



- Biometrics combine I & A
 - □ Facial recognition (FR), for example, can run covertly
 - ✓ 2001 Super Bowl Tampa Police deployed FR
 - ✓ But wider acceptance at airports after 9/11 attacks
 - □Finger scanning associated with police work & criminals

□Concern over using biometrics for nationwide

identification

- > Summary of concerns:
 - □Loss of anonymity & privacy
 - □Unauthorized use of biometric data
 - □Unauthorized disclosure
 - □ Reduced expectation of privacy
 - **□Abuse by government agencies**

Legal Issues

NORWICH UNIVERSITY

- ➤ In US, 4 categories of invasion of privacy
 - 1. Intrusion into private life
 - 2. Public disclosure of private facts
 - 3. Impersonation
 - 4. Publication putting victim in false light (defamation)
- ➤ Biometrics generally involve (1) and (2)
- Storing hashed version of recognition templates may resolve these issues
 - □One-way encryption (like passwords)
 - □Can recognize match with data but not store original data

Recent Trends in Biometric Authentication

- **≻Government Advances**
- > Face Scanning at Airports & Casinos
- > Deployment in Financial Industry
- ➤ Healthcare Industry
- **≻Time & Attendance Systems**

Government Advances

- > US government major user of biometrics
 - □DoD Common Access Card (smart card with biometric data)
 - **DHS**
 - ✓ US-VISIT (face, fingerprint)
 - **✓ TWIC (Transportation Worker Identity Credential)**
 - **INS**
 - **□DoT**

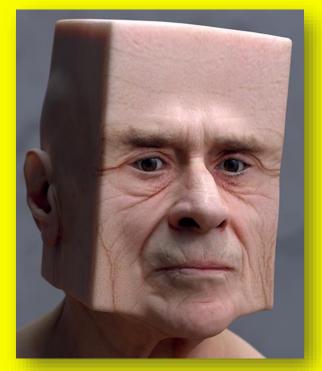
Face Scanning at Airports & Casinos

Airports moving to include facescanning

□Studies show high error rates

□Low accuracy rates

➤ Casinos


□ Identify intelligent people who win more than casinos want them to

□Spot frauds

□Networked 100s of casinos to share info on whom they want to exclude

➤ International law

□Question of whether these systems violate UN Universal Declaration of Human Rights, Article 12

Deployment in Financial Industry

- Facial recognition at ATMs
- > Fingerprint scanners for brokers
- Iris scanning for high-security points
- ➤ United Bankers' Bancorporation (UBB)
 - □Fingerprint recognition
 - **□**Employees
 - **□Customers**
- > Others:
 - □Wells Fargo
 - □Bloomberg Financial
 - □Janus Capital Management

Healthcare Industry

- HIPAA regulations force better privacy & security for patient data
 - □E.g., Mayo Clinic fingerprint ID 2002
- > Slower adoption than in financial industry
 - □Physical contact with fingerprint reader
 - □Error rates higher & accuracy lower than expected
 - ■May be affected by chronically dry hands from repeated hand-washing and repeated use of disinfectants
- High costs of implementation in hospitals

Time & Attendance Systems

- Biometric systems
- > Originally implemented in factories
- > Extending to white-collar workers
- Mostly using finger-scanning systems

Racial Bias in Facial Recognition

Lohr, S. (2018). "Facial Recognition is Accurate, if You're a White Guy." *New York Times* (Feb 9, 2018). https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html

- Disturbing results of study
 - □Lighter-skinned men: 99% accuracy
 - □Lighter-skinned women: 93% accuracy
 - □Darker-skinned men: 88% accuracy
 - □ Darker-skinned women: 65% accuracy
- Possible reasons:
 - □Data samples widely used for AI in facial recognition are as high as 75% male & >80% white
- Very little government regulation of this technology

Now go and study