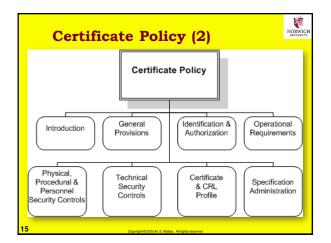
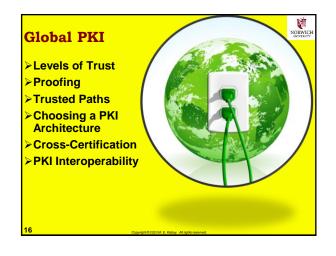
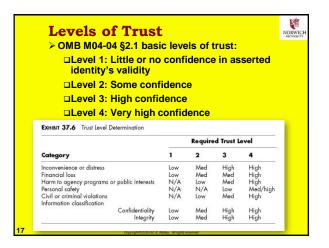
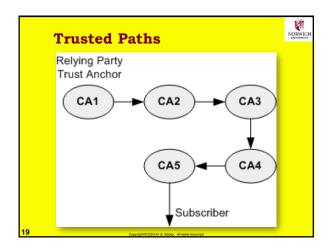

NORWICE NORWIC Advantages of PKC over SKC **Combination of the Two** PKC requires fewer keys to manage **Usual implementation of PKC uses symmetric** □Total keys 2n (Cf SKC with $\frac{1}{2}n(n-1) \approx \frac{1}{2}n^2$) algorithm for session key Can focus on authenticating only Computationally less onerous public keys □Encrypt session key with asymmetric key No secret keys transmitted over **Digital signing uses similar** networks method □Not susceptible to □Encrypt secure hash of compromise even if public document keys must be changed Decrypt encrypted hash to Public keys can be used to verify data integrity and encrypt temporary session keys authenticity of text for one-time use Session keys allow PKC to encrypt message for multiple recipients easily

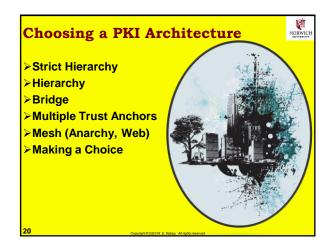


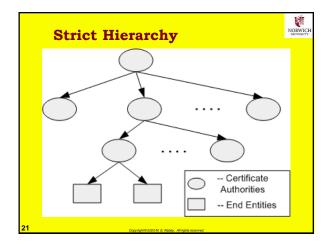


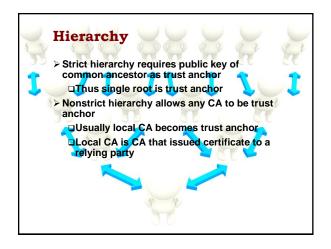


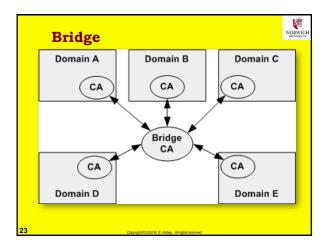


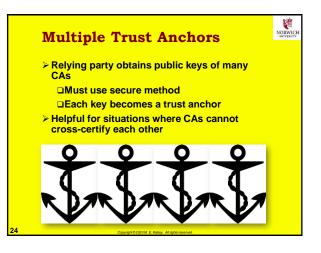


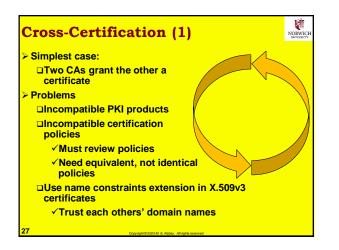


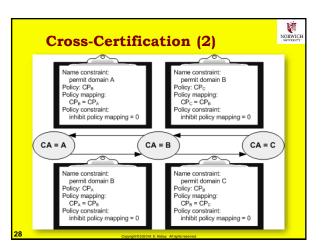


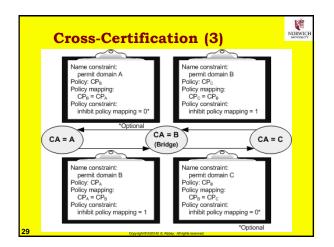


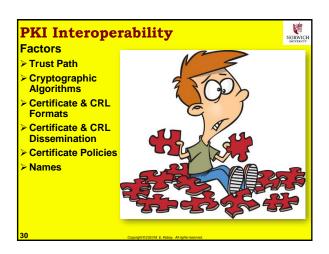

_	thorough ba	ofing) requires increasing ackground checking of ide	
Level	37.7 Trust Levels an Title	Proofing	Authentication
1	Default	Anonymous allowed.	None
2	Basic	Simple assertion — may be online.	Password
3	Medium (software)	 9 employment eligibility verification and authorization. Must be in person. 	Software certificate
3	Medium (hardware)	I–9 employment eligibility verification and authorization. Must be in person. Biometrics may be captured.	Hardware certificate
4	High	National agency check or local agency check, background investigation, and authorization required. Final proofing must be in person.	Hardware certificate

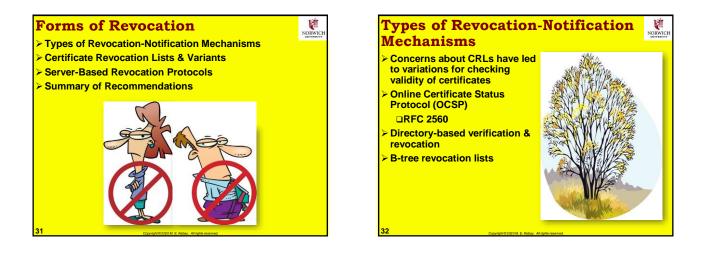








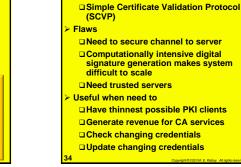




に

1

NORWI


Certificate Revocation Lists & Variants

- Most versatile, effective & recommended
- Variations
 - □Full & complete CRL (rare)
 - ✓ All certificates, revoked and valid
 - ✓ Most CRLs have only recent revocations

□Authority revocation list (ARL) – usually short

- ✓ Revocations only for CAs
- ✓Don't use X.509v1 ARL only X.509v2,
- which distinguishes between CRL & ARL Distribution-point CRL: allows partitions for shorter lists

Delta CRL: changes only since last CRL

Summary of Recommendations for CRLs

- Use combination of
- ≻ CRLs
- Replication of CA directory entry for fast access
- > ARLs & their consolidation
- Consolidation of reason-codes of key compromise in a domain
 - Use Distribution Point extension
- Partition routine revocation info using Distribution Point CRLs if CRLs become too large
- Store plaintext CRLs for fast searching
- Eliminate private information to eliminate need for authentication when searching CRLs

Server-Based Revocation Protocols

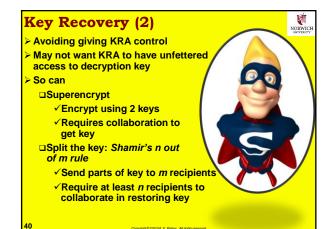
□On-Line Certificate Status Protocol (OCSP)

Servers provide revocation info; e.g.,

NORWICH

	imating Brute-Force cking time	NOR
BRUTE	FORCE CRACKING OF 1024-BIT RSA	KEY
25	years to crack in	2008
6	years later in	2014
4	18-month periods elapsed	
0.5	cracking time ratio / 18 months (Moore's Law)	
0.0625	Cracking time ratio now is nth root of time ratio	
1.5625	years now to crack key	
	Copyright 52/20 M. E. Kabay. All rights reserved.	

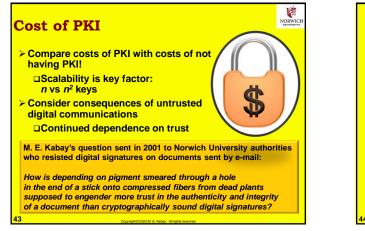
Key Recovery (1)

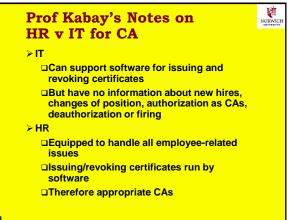

NORWIC

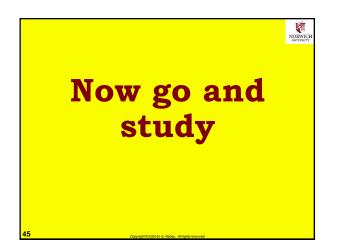
- Distinguish between signing keys & data encryption keys
 Signing keys must never be subject to key recovery!
 Data encryption keys may be protected by key recovery
- > Key escrow
 - Provide private decryption key to key recovery agent (KRA)



Encrypt private decryption key using KRA's public key






EXHIBIT 37.14 Privile	IBIT 37.14 Privilege Management			
Alternative	Pros	Cons		
Application-based access control	Easy to implement.	Need to manage privileges on an application-by-application basis.		
Public Key Certificate	Does not require additional infrastructure, so saves cost.	Synchronization of privileges may be hard as applications increase and as they are distributed. Security may be compromised if privileges are not removed from all applications.		
	Easy to add to PKI.	Higher operational costs. Changes in privileges require revocation of identity certificate.		
	Privileges can be managed easily by revoking certificate.	Sometimes this is a small price to pay for savings that result from not having to deploy and operate a separate privilege managemen infrastructure (PMI). Parties issuing identity certificate		
		may not have authority to bestow privileges.		
Attribute Certificate	Privileges can be managed easily by revoking attribute certificates. Change in privilege does not require revocation of	Cost of privilege management infrastructure (PMI).		

Introduction to IA – Class Notes

