
Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 1 All rights reserved.

1 Copyright © 2018 M. E. Kabay. All rights reserved.

Secure
Coding

CSH6 Chapter 38

“Writing Secure Code”

Lester E. Nichols, M. E. Kabay,
& Timothy Braithwaite

2 Copyright © 2018 M. E. Kabay. All rights reserved.

Topics

Introduction

Policy & Management Issues

Technical & Procedural Issues

Types of Software Errors

Assurance Tools & Techniques

3 Copyright © 2018 M. E. Kabay. All rights reserved.

Introduction

Chapter / lecture serves as overview &
introduction to large subject

Secure coding complex issue

 Involves human factors & technical issues

Requires coordination & cooperation of many
sectors in organization

Starts with a few funny (or scary) examples of
SQA failures

4 Copyright © 2018 M. E. Kabay. All rights reserved.

Easter Egg in Excel 97
Undocumented keystrokes

would activate flight simulator
using full-screen graphics

1. On a new Worksheet,
Press F5

2. Type X97:L97 and Enter

3. Press the Tab key

4. Hold Ctrl-Shift

5. Click on the Chart Wizard toolbar button

6. Use mouse to fly around - Right button
forward/ Left button reverse

 Included rolling credits of developer names

Pressing ESC would crash some systems

http://www.youtube.com/watch?v=c6nY0QkG9nQ

5 Copyright © 2018 M. E. Kabay. All rights reserved.

Secret Writer’s Society
(1998)

Game for children

Read kids’ writing back to them out loud

 Included filter of prohibited nasty words

Curses, obscenities…

Bug: proceeded to read ALL the bad words
out loud to the children!

“Children and parents were startled by the
streams of foul language erupting from their
computers.”

“The company's response was to deny that it
was a significant problem.”

6 Copyright © 2018 M. E. Kabay. All rights reserved.

Belligerent Crapper (2001)

A 51-year-old woman was subjected to a harrowing two-
hour ordeal [on 16 Apr 2001] when she was imprisoned in a
hi-tech public convenience.

Maureen Shotton, from Whitley Bay, was captured by the
maverick cyberloo during a shopping trip to Newcastle-
upon-Tyne.

The toilet, which boasts state-of-the-art electronic auto-
flush and door sensors, steadfastly refused to release
Maureen, and further resisted attempts by passers-by to
force the door.

Maureen was finally liberated when the fire brigade ripped
the roof off the cantankerous crapper.

Maureen's terrifying experience confirms that it is a short
step from belligerent bogs to Terminator-style cyborgs
hunting down and exterminating mankind. [RISKS 21:35]

http://www.youtube.com/watch?v=c6nY0QkG9nQ

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 2 All rights reserved.

7 Copyright © 2018 M. E. Kabay. All rights reserved.

Waldo Goes Wild (2005)

UCSF Medical Center

“Waldo” (named after famous Heinlein
story) dispensed pills & potions

Size of a small washing machine

Waldo suddenly refused to return to
dispensary for new pills

Went roaring past destination at high speed

Crashed into radiation oncology department

Patient examination in progress

“The psychotic pill pusher reportedly refused
to leave, sending both doctor and patient
fleeing for their lives.”

8 Copyright © 2018 M. E. Kabay. All rights reserved.

SCADA System Insecurity
Supervisory Control and Data Acquisition

Systems

 INFOSEC Year in Review database

9 Copyright © 2018 M. E. Kabay. All rights reserved.

Policy & Management Issues

 Security of code has become essential

Strategic importance

Yet many SW projects produce

Inadequate functionality (wrong goals)

Buggy code (not achieving goals)

 Fundamental problems

Short-term accounting fails to recognize long-term
benefits of investing in low-bug code

Difficulty in proving negative: absence of bugs

 Topics on following slides:

Software TQM

Due Diligence

Regulatory & Compliance Considerations

10 Copyright © 2018 M. E. Kabay. All rights reserved.

Software TQM

Software must adapt to constantly changing needs

ISO 9000 family of standards

Plan-do-check-act / plan-fix-monitor-assess

 Integrate security planning into every phase of SW
cycle

Analysis, requirements, design, coding,
implementation

Cannot effectively or efficiently retrofit security

Expect iterative approach to compliance

Must cope with changing threat environment

Include security in modifications

11 Copyright © 2018 M. E. Kabay. All rights reserved.

Due Diligence

Management must integrate security into
performance metrics

Evolving security information forces changes
in best practices

Boards / C-level executives becoming
personally liable for failures

Must establish & document security risk
management in SW development

Thus demonstrate compliance with current
standards

Meet standard of due care and diligence in
exercising fiduciary responsibilities

12 Copyright © 2018 M. E. Kabay. All rights reserved.

Regulatory & Compliance
Considerations

Specific regulations usually dictate need for
records; e.g.,

Sarbanes-Oxley

Gramm-Leach-Bliley

Health Insurance Portability & Accountability
Act

Keep records of problems

Identification date & agent

Severity (implications, systems affected)

Report to management

Remediation target & completion date

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 3 All rights reserved.

13 Copyright © 2018 M. E. Kabay. All rights reserved.

Technical & Procedural
Issues

Development team often under time pressure

Sales / management personnel may value time
to market over lack of bugs

Must fight to adhere to systematic SW
development methodology with adequate
prevention, monitoring & correction of errors

Topics on following slides:

Requirements Analysis

Design

Operating System

Best Practices & Guidelines

Languages

14 Copyright © 2018 M. E. Kabay. All rights reserved.

Requirements Analysis

Staircase principle: delaying correction
multiplies cost of error 10x

Requirements analysis

Requirements definition

Design

Coding

Implementation

Analysis must include discussions of security
needs (confidentiality, control, integrity,
authenticity, availability, utility)

Definition must explicitly define function
goals that include these security aspects

15 Copyright © 2018 M. E. Kabay. All rights reserved.

Design

Data structures design instantiates
information model

Logic design instantiates relationships
among elements of model

Procedural model instantiates data flow and
object relations

Include access privileges, restrictions

Project planning must allow for adequate
software quality assurance [See CSH6
Chapter 39, “Software Development & Quality
Assurance”]

16 Copyright © 2018 M. E. Kabay. All rights reserved.

Operating System

OS is at core of security implementation

Secure OS implements

Completeness: all access to information
managed by kernel

Isolation: kernel protected against
unauthorized access

Verifiability: kernel proven to meet design
specifications

17 Copyright © 2018 M. E. Kabay. All rights reserved.

Best Practices & Guidelines (1)

Excellent guides to best practices:

NIST Special Publications Series 800

http://csrc.nist.gov/publications/PubsSPs.html

List of recommendations in §38.3.4 (below)

 Impose strong I&A

Document code thoroughly

Use local variables, not global variables, when
storing sensitive data

Reinitialize temporary storage immediately after
the last legitimate use

Limit functionality in a specific module to what is
required for a specific job

18 Copyright © 2018 M. E. Kabay. All rights reserved.

Best Practices (2)

Define views of data in databases that
conform to functional requirements and limit
access to sensitive data

Use strong encryption (not homegrown
encryption)

Disallow access by programmers to
production databases

Randomize or otherwise mask sensitive data
when generating test subsets from
production data

Use test-coverage monitors

 Integrate logging capability into all
applications

http://csrc.nist.gov/publications/PubsSPs.html

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 4 All rights reserved.

19 Copyright © 2018 M. E. Kabay. All rights reserved.

Best Practices (3)

Create log-file records with cryptographically
sound message authentication code (MAC) that
itself includes the MAC of the preceding record

Log all process initiations for a program and log
process termination

Log all modifications to records

Use record-level locking

Unlock a sequence of locks in the inverse order of
the lock sequence to prevent deadlocks

Sign your source code using digital signatures

Use checksums in production executables

20 Copyright © 2018 M. E. Kabay. All rights reserved.

Best Practices (4)

Design code holistically, including tests of
what should not be accepted

Establish criteria for defining and determining
sensitivity of data being processed

 Implement formal SQA control processes

 Identify mandatory OS & NW security settings
for code to run securely

Verify digital signatures of routines being
loaded for execution

Verify digital signatures or checksums of all
executables being loaded at system restart

21 Copyright © 2018 M. E. Kabay. All rights reserved.

Microsoft SQA Project

Nov 2001: Bill Gates -- two top priorities

Improving reliability of MS sw

Conquering market for "tablet" computers

Jan 2002: Trustworthy Computing initiative
launched

Choose security over features

Emphasize security right out of the box

Privacy key concern

Feb 2002: MS hires top security expert

Scott Charney – famous expert

Oversee MS strategies for enhanced
security

22 Copyright © 2018 M. E. Kabay. All rights reserved.

Examples of MS SQA Books

23 Copyright © 2018 M. E. Kabay. All rights reserved.

Languages

To degree possible, take advantage of security
features of programming tools

Different languages offer different advantages

Java includes sandbox for isolation of
processes

PASCAL offers strong typing

But C & C++ have almost no security
restrictions during execution

Security utilities and routines available for
integration

RSA toolkits

Textbooks (e.g, Schneier’s Applied
Cryptography)

24 Copyright © 2018 M. E. Kabay. All rights reserved.

Types of Software Errors
Internal Design or Implementation

 Initialization

 Logic Flow

 Calculation

 Boundary Condition Violations

 Parameter Passing

 Race Condition

 Load Condition

 Resource Exhaustion

 Resource, Address, or Program Conflict with the
Operating System or Application(s)

 Regulatory Compliance Considerations

 Other Errors

OOPS!

DARN!

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 5 All rights reserved.

25 Copyright © 2018 M. E. Kabay. All rights reserved.

Initialization Errors

 Insidious & difficult to find

Failing to initialize data may leave
garbage in registers

So program may fail depending on what is
in registers from some previous use

And program may fail on 1st use

Intermittent problem – race condition

Others may always fail on 1st use because of
zero and blank values from OS or language
rules

Some programs write initialized values to disk

So fail only on 1st use

26 Copyright © 2018 M. E. Kabay. All rights reserved.

Logic Flow

Modules pass control to each other or other
programs

So calling wrong function causes error

Problems occur when code branches to
subroutine lacking a RETURN code

Often data dependent

Intermittent failures

Use DEBUG utility to check
current execution, step
through code

27 Copyright © 2018 M. E. Kabay. All rights reserved.

Calculation

Frequent problem: wrong size of storage element

Store long value in short field

Truncates data, leads to bad
calculations

Errors in formula may be hard
to catch

Especially if specifics of
formula are data dependent

28 Copyright © 2018 M. E. Kabay. All rights reserved.

Boundary Condition Violations
Critically important to define limits on

acceptable data values = bounds

Most common error:
buffer overflow

Data exceeds expected
length of storage

Usually exploited using
input buffers

Send long data string into input which is not checked
for length

Program writes data beyond end of array

May execute portions of data stream

Always check data length before storing

Reject; or

Truncate

29 Copyright © 2018 M. E. Kabay. All rights reserved.

Buffer Overflows

What is a buffer overflow?

Origin of buffer overflow

vulnerabilities

Fighting buffer

overflows

30 Copyright © 2018 M. E. Kabay. All rights reserved.

What Is a Buffer Overflow?

Programming concept:

Define (declare,

dimension)

list (array, indexed

variable, string)

of certain size

To reserve area of

memory for specific use

during execution

array(0)

array(1)

array(7)

double array[8]

} Other data

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 6 All rights reserved.

31 Copyright © 2018 M. E. Kabay. All rights reserved.

Origin of Buffer Overflow

Vulnerabilities

 In using a member of

an array (an indexed

variable), it is critically

important to avoid

addressing out of

bounds

Doing so is called a

bounds violation

Can corrupt data of

other variables

array(0)

array(1)

array(7)

double array[8]

} Other data

array(8)

32 Copyright © 2018 M. E. Kabay. All rights reserved.

Consequences of Bounds
Violations

Possible to see

Compiler error

Run-time error

Program errors – bad results

Program crash

System crash

But most dangerous problem occurs in interpreters

Programs that dynamically interpret instructions

E.g., browsers, Web server programs

33 Copyright © 2018 M. E. Kabay. All rights reserved.

Bounds Violations in
Interpreters

Some interpreters read
areas of data as
instructions (code)

Bounds violation can
put data into code
areas of working
memory

Thus bad data can
become equivalent to
bad code

Can sometimes execute
arbitrary code

Obtain unauthorized
privileges

array(0)

array(1)

array(7)

double array[8]

} CODE for

interpreter

34 Copyright © 2018 M. E. Kabay. All rights reserved.

Fighting Buffer Overflows

Programmers need to use good quality assurance

techniques

Test long input strings

Test below, at and above

boundary conditions

System / network / security staff:

check for new buffer overflows &

install patches

Use ICAT Metabase frequently

Subscribe to CERT-CC alerts from http://www.cert.org

35 Copyright © 2018 M. E. Kabay. All rights reserved.

Fighting Buffer Overflows

(cont’d)
Managers need to understand that

every buffer overflow is a failure of
quality assurance

Stop allowing manufacturers to
publish inadequately tested
software as production versions

Stop letting manufacturers push quality
assurance onto the client base

Complain loudly to manufacturers when there
are buffer overflows in their software – and, if
possible, buy competing products with better
quality assurance

36 Copyright © 2018 M. E. Kabay. All rights reserved.

Parameter Passing

Parameters passed among routines

Wrong name or wrong subscript in array
variable may pass wrong data

Can cause errors in

Calculations

Logic flow

Cascade of errors likely

Data corruption

Aborts

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 7 All rights reserved.

37 Copyright © 2018 M. E. Kabay. All rights reserved.

Race Condition

Problems occur when

Specific sequence of events
required for correct operation

But no enforcement or guarantee
of sequence

Known as race condition because correct operation
is a race between events

Classic example occurs in incorrect locking
strategies

A locks 1 and then locks 2

B locks 2 and then locks 1

OK if B tries to lock 2 AFTER A locks 2

But deadlock if B locks 2 before A tries to locks 2
38 Copyright © 2018 M. E. Kabay. All rights reserved.

Load Condition

Exceeding expected

Storage

Transactions

Users

Network bandwidth
utilization

May cause major declines in throughput

Problems of availability

Should use automated testing for simulation

Identify bottlenecks

Take preventative actions

39 Copyright © 2018 M. E. Kabay. All rights reserved.

Resource Exhaustion

Exhausting resources can cause failure;
e.g.,

Cannot write to full disk

Cannot obtain memory location

Cannot obtain CPU in time for
real-time processing

Running out of system table
entries

Running with inadequate main memory may
lead to excessive swapping between virtual
memory and main memory

Thrashing

40 Copyright © 2018 M. E. Kabay. All rights reserved.

Interapplication Conflicts

OS makers routinely provide application SW
makers with coding guidance & kits

But as OS versions & patches move on, older
applications may fail

E.g., HP3000 MPE increased stack
requirements

Older programs close to stack limitations
crashed with stack overflows

41 Copyright © 2018 M. E. Kabay. All rights reserved.

Other Errors

Sending bad data to devices

 Ignoring error codes from devices

Trying to use busy or missing
devices

 Improper builds of code (using
wrong routines)

42 Copyright © 2018 M. E. Kabay. All rights reserved.

User Interface
User Virtual Machine

Screens

Mouse & keyboard

Printed outputs

Especially important to
realize that user is not telepathic:

Cannot automatically know what designer /
programmer knows and assumes (“HIT
ANY KEY” → “Where’s the ANY key??”)

So programmers responsible for
envisaging possible pitfalls and preventing
problems

Documentation & training essential

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 8 All rights reserved.

43 Copyright © 2018 M. E. Kabay. All rights reserved.

Functionality (1)

When performance
reasonably expected
is missing, confusing,
awkward, difficult or
impossible, we have
a functionality
problem

See list of suggestions
in §38.4.1.1.2 & on
following slides

44 Copyright © 2018 M. E. Kabay. All rights reserved.

Functionality (2)

Features are not documented

Required information is missing

A program fails to acknowledge
legitimate input

There are factual errors or
conflicting names for features

There is information overload

The material is written to an inappropriate reading
level

The cursor disappears, or is in the wrong place

Screen displays are wrong

 Instructions are obscured

45 Copyright © 2018 M. E. Kabay. All rights reserved.

Functionality (3)

 Identical functions require
different operations in different
screens

 Improperly formatted input
screens exist

Passwords or other confidential
information not obscured or
protected adequately

Tracing user data entry or changes unavailable or
incomplete

Segregation of duties not enforced (Can be
particularly critical for organizations subject to
legal and regulatory requirements)

46 Copyright © 2018 M. E. Kabay. All rights reserved.

Control (Command)
Structure (1)

Control structure errors can cause serious
problems because they can result in:

 Users getting lost in a program

 Users wasting time because they must deal
with confusing commands

 Loss of data or unwanted exposure of data

Work delay

 Financial cost

 Unanticipated exposure to data leakage or
compromise; can result in significant liability if
consumers' personal identifying information
(PII) compromised

 Data not being encrypted as intended or being
visible to unauthorized users

47 Copyright © 2018 M. E. Kabay. All rights reserved.

Control (Command)
Structure (2)

Some common errors listed in §38.4.1.13
include:

 Inability to move between menus

 Confusing and repetitive menus

 Failure to allow adequate command-line
entries

 Requiring command-line entries that are
neither intuitive nor clearly defined on
screen

 Failure of the application program to
follow the operating system's conventions

 Failure to distinguish between source and parameter files,
resulting in wrong values being made available to user
through interface, or failure to identify source of error

48 Copyright © 2018 M. E. Kabay. All rights reserved.

Control (Command)
Structure (3)

 Inappropriate use of keyboard, when new programs do
not meet standard of a keyboard that has labeled
function keys tied to standard meanings

Missing commands from code and screens resulting in
user being unable to access information, to utilize
programs, or to provide for system to be backed up
and recoverable

 Inadequate privacy or security that can result in
confidential information being divulged, in complete
change or loss of data without recoverability, in poor
reporting, and even in undesired access by outside
parties

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 9 All rights reserved.

49 Copyright © 2018 M. E. Kabay. All rights reserved.

Performance (1)

Speed important in interactive software

Problem can include

Slow response

Unannounced case sensitivity,

Uncontrollable and excessively frequent
automatic saves

Inability to save

Limited scrolling speed

50 Copyright © 2018 M. E. Kabay. All rights reserved.

Performance (2)

Slow operation can depend on (but is not
limited to)

OS

Other applications running concurrently

Memory saturation and thrashing

Memory leakage (the failure to deallocate
memory that is no longer needed)

Disk I/O inefficiencies (e.g., reading single
records from very large blocks),

Program conflicts (e.g., locking errors)

See CSH6 Chapter 52 “Application Controls”

51 Copyright © 2018 M. E. Kabay. All rights reserved.

Performance (3)

Program designs can make it difficult to
change their functionality

Response to changing requirements

E.g., database design – defining primary
index field

Determines how records stored on disk

Can greatly speed access to records
during sequential reads on key values for
that index

But can be counterproductive if main
method for accessing records = sequential
reads on completely different index

52 Copyright © 2018 M. E. Kabay. All rights reserved.

Output Format

User cannot change appearance of output

Font

Underlining

Boldface

Spacing

Delays in printing or saving document

Problems in scaling tables, figures, graphs

Errors in displayed precision of numbers

53 Copyright © 2018 M. E. Kabay. All rights reserved.

Assurance Tools &
Techniques

Education Resources

See list in CSH6 §38.5.1 p 38.13

Code Examination & Application Penetration
Testing

White Box

Black Box

Gray Box

Standards & Best Practices

See

next

slides

54 Copyright © 2018 M. E. Kabay. All rights reserved.

White Box
 AKA glass, structural, open, clear box

 Tests using knowledge of internals

 Advantages of white box testing:

Easy to find out which type of input/data can help in
testing

Helps in optimizing code

Helps in removing extra (useless) lines of code
which can bring in hidden defects

 Disadvantages of white box testing:

Skilled tester needed → increases cost

Nearly impossible to look into every bit of code to
find hidden errors

Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay 10 All rights reserved.

55 Copyright © 2018 M. E. Kabay. All rights reserved.

Black Box (1)
Testing without knowledge of internal workings

AKA behavioral, functional, opaque box, closed
box

Tester & programmer can be independent of
one another

Avoid programmer bias toward own work

Test groups often used

Test planning can begin as soon as
specifications written

56 Copyright © 2018 M. E. Kabay. All rights reserved.

Black Box (2)

Advantages of black box testing:

More effective on larger units of code than glass
box testing

Tester needs no knowledge of implementation,
including specific programming languages

Tester and programmer independent of each
other

Tests done from user's point of view

Help to expose ambiguities or inconsistencies in
specifications.

Test cases can be designed as soon as
specifications are complete.

57 Copyright © 2018 M. E. Kabay. All rights reserved.

Black Box (3)

Disadvantages of black box testing:

Few possible inputs can actually be tested

Without clear and concise specifications, test
cases hard to design

Unnecessary repetition of test inputs if the tester
not informed of test cases programmer has
already tried.

May leave many program paths untested

Cannot be directed toward specific segments of
code that may be very complex

58 Copyright © 2018 M. E. Kabay. All rights reserved.

Gray Box

Combination of black box testing and white
box testing

Tester does know some of internal workings
of software under test

Applies limited number of test cases to
internal workings of software under test

Then takes black box approach in applying
inputs to software under test and observing
outputs

59 Copyright © 2018 M. E. Kabay. All rights reserved.

Standards & Best Practices

 Consensus

Perform automated testing

Make a test plan

Follow a specific methodology

Test at every stage

Test all system components

 Standards

 ISO 17799, Information Technology: Code of Practice
for Information Security Management

 ISO/IEC 15408, Evaluation Criteria for IT Security (the
Common Criteria)

SSE-CMM, System Security Engineering Capability
Maturity Model

 ISO/IEC WD 15443, Information Technology: Security
Techniques

60 Copyright © 2018 M. E. Kabay. All rights reserved.

Now go and
study

