
Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             1 All rights reserved.

1 Copyright © 2018 M. E. Kabay.  All rights reserved.

Secure 
Coding

CSH6 Chapter 38

“Writing Secure Code”

Lester E. Nichols, M. E. Kabay, 
& Timothy Braithwaite

2 Copyright © 2018 M. E. Kabay.  All rights reserved.

Topics

Introduction

Policy & Management Issues

Technical & Procedural Issues

Types of Software Errors

Assurance Tools & Techniques

3 Copyright © 2018 M. E. Kabay.  All rights reserved.

Introduction

Chapter / lecture serves as overview & 
introduction to large subject

Secure coding complex issue

 Involves human factors & technical issues

Requires coordination & cooperation of many 
sectors in organization

Starts with a few funny (or scary) examples of 
SQA failures

4 Copyright © 2018 M. E. Kabay.  All rights reserved.

Easter Egg in Excel 97
Undocumented keystrokes 

would activate flight simulator 
using full-screen graphics

1. On a new Worksheet, 
Press F5 

2. Type X97:L97 and Enter

3. Press the Tab key 

4. Hold Ctrl-Shift

5. Click on the Chart Wizard toolbar button 

6. Use mouse to fly around - Right button 
forward/ Left button reverse

 Included rolling credits of developer names

Pressing ESC would crash some systems

http://www.youtube.com/watch?v=c6nY0QkG9nQ

5 Copyright © 2018 M. E. Kabay.  All rights reserved.

Secret Writer’s Society 
(1998)

Game for children

Read kids’ writing back to them out loud

 Included filter of prohibited nasty words

Curses, obscenities…

Bug: proceeded to read ALL the bad words 
out loud to the children!

“Children and parents were startled by the 
streams of foul language erupting from their 
computers.”

“The company's response was to deny that it 
was a significant problem.”

6 Copyright © 2018 M. E. Kabay.  All rights reserved.

Belligerent Crapper (2001)

A 51-year-old woman was subjected to a harrowing two-
hour ordeal [on 16 Apr 2001] when she was imprisoned in a 
hi-tech public convenience. 

Maureen Shotton, from Whitley Bay, was captured by the 
maverick cyberloo during a shopping trip to Newcastle-
upon-Tyne. 

The toilet, which boasts state-of-the-art electronic auto-
flush and door sensors, steadfastly refused to release 
Maureen, and further resisted attempts by passers-by to 
force the door. 

Maureen was finally liberated when the fire brigade ripped 
the roof off the cantankerous crapper. 

Maureen's terrifying experience confirms that it is a short 
step from belligerent bogs to Terminator-style cyborgs 
hunting down and exterminating mankind. [RISKS 21:35]

http://www.youtube.com/watch?v=c6nY0QkG9nQ


Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             2 All rights reserved.

7 Copyright © 2018 M. E. Kabay.  All rights reserved.

Waldo Goes Wild (2005)

UCSF Medical Center

“Waldo” (named after famous Heinlein 
story) dispensed pills  & potions

Size of a small washing machine

Waldo suddenly refused to return to 
dispensary for new pills

Went roaring past destination at high speed

Crashed into radiation oncology department

Patient examination in progress

“The psychotic pill pusher reportedly refused 
to leave, sending both doctor and patient 
fleeing for their lives.”

8 Copyright © 2018 M. E. Kabay.  All rights reserved.

SCADA System Insecurity
Supervisory Control and Data Acquisition 

Systems

 INFOSEC Year in Review database

9 Copyright © 2018 M. E. Kabay.  All rights reserved.

Policy & Management Issues

 Security of code has become essential

Strategic importance

Yet many SW projects produce 

Inadequate functionality (wrong goals)

Buggy code (not achieving goals)

 Fundamental problems

Short-term accounting fails to recognize long-term 
benefits of investing in low-bug code

Difficulty in proving negative: absence of bugs

 Topics on following slides:

Software TQM

Due Diligence

Regulatory & Compliance Considerations

10 Copyright © 2018 M. E. Kabay.  All rights reserved.

Software TQM

Software must adapt to constantly changing needs

ISO 9000 family of standards

Plan-do-check-act / plan-fix-monitor-assess

 Integrate security planning into every phase of SW 
cycle

Analysis, requirements, design, coding, 
implementation

Cannot effectively or efficiently retrofit security

Expect iterative approach to compliance

Must cope with changing threat environment

Include security in modifications

11 Copyright © 2018 M. E. Kabay.  All rights reserved.

Due Diligence

Management must integrate security into 
performance metrics

Evolving security information forces changes 
in best practices

Boards / C-level executives becoming 
personally liable for failures

Must establish & document security risk 
management in SW development

Thus demonstrate compliance with current 
standards

Meet standard of due care and diligence in 
exercising fiduciary responsibilities

12 Copyright © 2018 M. E. Kabay.  All rights reserved.

Regulatory & Compliance 
Considerations

Specific regulations usually dictate need for 
records; e.g., 

Sarbanes-Oxley

Gramm-Leach-Bliley

Health Insurance Portability & Accountability 
Act

Keep records of problems

Identification date & agent

Severity (implications, systems affected)

Report to management

Remediation target & completion date



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             3 All rights reserved.

13 Copyright © 2018 M. E. Kabay.  All rights reserved.

Technical & Procedural 
Issues

Development team often under time pressure

Sales / management personnel may value time 
to market over lack of bugs

Must fight to adhere to systematic SW 
development methodology with adequate 
prevention, monitoring & correction of errors

Topics on following slides:

Requirements Analysis

Design

Operating System

Best Practices & Guidelines

Languages

14 Copyright © 2018 M. E. Kabay.  All rights reserved.

Requirements Analysis

Staircase principle: delaying correction 
multiplies cost of error 10x

Requirements analysis

Requirements definition

Design

Coding

Implementation

Analysis must include discussions of security 
needs (confidentiality, control, integrity, 
authenticity, availability, utility)

Definition must explicitly define function 
goals that include these security aspects

15 Copyright © 2018 M. E. Kabay.  All rights reserved.

Design

Data structures design instantiates 
information model

Logic design instantiates relationships 
among elements of model

Procedural model instantiates data flow and 
object relations

Include access privileges, restrictions

Project planning must allow for adequate 
software quality assurance [See CSH6
Chapter 39, “Software Development & Quality 
Assurance”]

16 Copyright © 2018 M. E. Kabay.  All rights reserved.

Operating System

OS is at core of security implementation

Secure OS implements

Completeness: all access to information 
managed by kernel

Isolation: kernel protected against 
unauthorized access

Verifiability: kernel proven to meet design 
specifications

17 Copyright © 2018 M. E. Kabay.  All rights reserved.

Best Practices & Guidelines (1)

Excellent guides to best practices: 

NIST Special Publications Series 800

http://csrc.nist.gov/publications/PubsSPs.html

List of recommendations in §38.3.4 (below)

 Impose strong I&A

Document code thoroughly

Use local variables, not global variables, when 
storing sensitive data

Reinitialize temporary storage immediately after 
the last legitimate use

Limit functionality in a specific module to what is 
required for a specific job

18 Copyright © 2018 M. E. Kabay.  All rights reserved.

Best Practices (2)

Define views of data in databases that 
conform to functional requirements and limit 
access to sensitive data

Use strong encryption (not homegrown 
encryption)

Disallow access by programmers to 
production databases

Randomize or otherwise mask sensitive data 
when generating test subsets from 
production data

Use test-coverage monitors

 Integrate logging capability into all 
applications

http://csrc.nist.gov/publications/PubsSPs.html


Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             4 All rights reserved.

19 Copyright © 2018 M. E. Kabay.  All rights reserved.

Best Practices (3)

Create log-file records with cryptographically 
sound message authentication code (MAC) that 
itself includes the MAC of the preceding record

Log all process initiations for a program and log 
process termination

Log all modifications to records

Use record-level locking

Unlock a sequence of locks in the inverse order of 
the lock sequence to prevent deadlocks

Sign your source code using digital signatures

Use checksums in production executables

20 Copyright © 2018 M. E. Kabay.  All rights reserved.

Best Practices (4)

Design code holistically, including tests of 
what should not be accepted

Establish criteria for defining and determining 
sensitivity of data being processed

 Implement formal SQA control processes

 Identify mandatory OS & NW security settings 
for code to run securely

Verify digital signatures of routines being 
loaded for execution

Verify digital signatures or checksums of all 
executables being loaded at system restart

21 Copyright © 2018 M. E. Kabay.  All rights reserved.

Microsoft SQA Project

Nov 2001: Bill Gates -- two top priorities 

Improving reliability of MS sw

Conquering market for "tablet" computers

Jan 2002: Trustworthy Computing initiative
launched

Choose security over features

Emphasize security right out of the box

Privacy key concern

Feb 2002: MS hires top security expert

Scott Charney – famous expert

Oversee MS strategies for enhanced 
security

22 Copyright © 2018 M. E. Kabay.  All rights reserved.

Examples of MS SQA Books

23 Copyright © 2018 M. E. Kabay.  All rights reserved.

Languages

To degree possible, take advantage of security 
features of programming tools

Different languages offer different advantages

Java includes sandbox for isolation of 
processes

PASCAL offers strong typing

But C & C++ have almost no security 
restrictions during execution

Security utilities and routines available for 
integration

RSA toolkits

Textbooks (e.g, Schneier’s Applied 
Cryptography)

24 Copyright © 2018 M. E. Kabay.  All rights reserved.

Types of Software Errors
Internal Design or Implementation

 Initialization

 Logic Flow

 Calculation

 Boundary Condition Violations

 Parameter Passing

 Race Condition

 Load Condition

 Resource Exhaustion

 Resource, Address, or Program Conflict with the 
Operating System or Application(s)

 Regulatory Compliance Considerations

 Other Errors

OOPS!

DARN!



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             5 All rights reserved.

25 Copyright © 2018 M. E. Kabay.  All rights reserved.

Initialization Errors

 Insidious & difficult to find

Failing to initialize data may leave 
garbage in registers

So program may fail depending on what is 
in registers from some previous use

And program may fail on 1st use

Intermittent problem – race condition

Others may always fail on 1st use because of 
zero and blank values from OS or language 
rules 

Some programs write initialized values to disk

So fail only on 1st use

26 Copyright © 2018 M. E. Kabay.  All rights reserved.

Logic Flow

Modules pass control to each other or other 
programs

So calling wrong function causes error

Problems occur when code branches to 
subroutine lacking a RETURN code

Often data dependent

Intermittent failures

Use DEBUG utility to check 
current execution, step 
through code

27 Copyright © 2018 M. E. Kabay.  All rights reserved.

Calculation

Frequent problem: wrong size of storage element

Store long value in short field

Truncates data, leads to bad 
calculations

Errors in formula may be hard 
to catch

Especially if specifics of 
formula are data dependent

28 Copyright © 2018 M. E. Kabay.  All rights reserved.

Boundary Condition Violations
Critically important to define limits on 

acceptable data values = bounds

Most common error: 
buffer overflow

Data exceeds expected 
length of storage

Usually exploited using 
input buffers

Send long data string into input which is not checked 
for length

Program writes data beyond end of array

May execute portions of data stream

Always check data length before storing

Reject; or

Truncate

29 Copyright © 2018 M. E. Kabay.  All rights reserved.

Buffer Overflows

What is a buffer overflow?

Origin of buffer overflow 

vulnerabilities

Fighting buffer 

overflows

30 Copyright © 2018 M. E. Kabay.  All rights reserved.

What Is a Buffer Overflow?

Programming concept:

Define (declare, 

dimension) 

list (array, indexed 

variable, string) 

of certain size

To reserve area of 

memory for specific use 

during execution

array(0)

array(1)

array(7)

double array[8]

} Other data



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             6 All rights reserved.

31 Copyright © 2018 M. E. Kabay.  All rights reserved.

Origin of Buffer Overflow 

Vulnerabilities

 In using a member of 

an array (an indexed 

variable), it is critically 

important to avoid 

addressing out of 

bounds

Doing so is called a 

bounds violation

Can corrupt data of 

other variables

array(0)

array(1)

array(7)

double array[8]

} Other data

array(8)

32 Copyright © 2018 M. E. Kabay.  All rights reserved.

Consequences of Bounds 
Violations

Possible to see

Compiler error 

Run-time error

Program errors – bad results

Program crash

System crash

But most dangerous problem occurs in interpreters 

Programs that dynamically interpret instructions

E.g., browsers, Web server programs

33 Copyright © 2018 M. E. Kabay.  All rights reserved.

Bounds Violations in 
Interpreters

Some interpreters read 
areas of data as 
instructions (code)

Bounds violation can 
put data into code
areas of working 
memory

Thus bad data can 
become equivalent to 
bad code

Can sometimes execute 
arbitrary code

Obtain unauthorized 
privileges

array(0)

array(1)

array(7)

double array[8]

} CODE for 

interpreter

34 Copyright © 2018 M. E. Kabay.  All rights reserved.

Fighting Buffer Overflows

Programmers need to use good quality assurance 

techniques

Test long input strings

Test below, at and above 

boundary conditions

System / network / security staff: 

check for new buffer overflows & 

install patches

Use ICAT Metabase frequently

Subscribe to CERT-CC alerts from http://www.cert.org

35 Copyright © 2018 M. E. Kabay.  All rights reserved.

Fighting Buffer Overflows 

(cont’d)
Managers need to understand that 

every buffer overflow is a failure of 
quality assurance

Stop allowing manufacturers to 
publish inadequately tested 
software as production versions

Stop letting manufacturers push quality 
assurance onto the client base

Complain loudly to manufacturers when there 
are buffer overflows in their software – and, if 
possible, buy competing products with better 
quality assurance

36 Copyright © 2018 M. E. Kabay.  All rights reserved.

Parameter Passing

Parameters passed among routines

Wrong name or wrong subscript in array 
variable may pass wrong data

Can cause errors in 

Calculations

Logic flow

Cascade of errors likely

Data corruption

Aborts



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             7 All rights reserved.

37 Copyright © 2018 M. E. Kabay.  All rights reserved.

Race Condition

Problems occur when 

Specific sequence of events 
required for correct operation

But no enforcement or guarantee 
of sequence

Known as race condition because correct operation 
is a race between events

Classic example occurs in incorrect locking 
strategies

A locks 1 and then locks 2

B locks 2 and then locks 1

OK if B tries to lock 2 AFTER A locks 2

But deadlock if B locks 2 before A tries to locks 2
38 Copyright © 2018 M. E. Kabay.  All rights reserved.

Load Condition

Exceeding expected

Storage

Transactions

Users

Network bandwidth 
utilization

May cause major declines in throughput

Problems of availability

Should use automated testing for simulation

Identify bottlenecks

Take preventative actions

39 Copyright © 2018 M. E. Kabay.  All rights reserved.

Resource Exhaustion

Exhausting resources can cause failure; 
e.g.,

Cannot write to full disk

Cannot obtain memory location

Cannot obtain CPU in time for 
real-time processing

Running out of system table 
entries

Running with inadequate main memory may 
lead to excessive swapping between virtual 
memory and main memory

Thrashing

40 Copyright © 2018 M. E. Kabay.  All rights reserved.

Interapplication Conflicts

OS makers routinely provide application SW 
makers with coding guidance & kits

But as OS versions & patches move on, older 
applications may fail

E.g., HP3000 MPE increased stack 
requirements

Older programs close to stack limitations 
crashed with stack overflows

41 Copyright © 2018 M. E. Kabay.  All rights reserved.

Other Errors

Sending bad data to devices

 Ignoring error codes from devices

Trying to use busy or missing 
devices

 Improper builds of code (using 
wrong routines)

42 Copyright © 2018 M. E. Kabay.  All rights reserved.

User Interface
User Virtual Machine

Screens

Mouse & keyboard

Printed outputs

Especially important to 
realize that user is not telepathic: 

Cannot automatically know what designer / 
programmer knows and assumes (“HIT 
ANY KEY” → “Where’s the ANY key??”)

So programmers responsible for 
envisaging possible pitfalls and preventing 
problems

Documentation & training essential



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             8 All rights reserved.

43 Copyright © 2018 M. E. Kabay.  All rights reserved.

Functionality (1)

When performance
reasonably expected 
is missing, confusing, 
awkward, difficult or 
impossible, we have 
a functionality 
problem

See list of suggestions 
in §38.4.1.1.2 & on 
following slides

44 Copyright © 2018 M. E. Kabay.  All rights reserved.

Functionality (2)

Features are not documented

Required information is missing

A program fails to acknowledge 
legitimate input

There are factual errors or 
conflicting names for features

There is information overload

The material is written to an inappropriate reading 
level

The cursor disappears, or is in the wrong place

Screen displays are wrong

 Instructions are obscured

45 Copyright © 2018 M. E. Kabay.  All rights reserved.

Functionality (3)

 Identical functions require 
different operations in different 
screens

 Improperly formatted input 
screens exist

Passwords or other confidential 
information not obscured or 
protected adequately

Tracing user data entry or changes unavailable or 
incomplete

Segregation of duties not enforced (Can be 
particularly critical for organizations subject to 
legal and regulatory requirements)

46 Copyright © 2018 M. E. Kabay.  All rights reserved.

Control (Command) 
Structure (1)

Control structure errors can cause serious 
problems because they can result in:

 Users getting lost in a program

 Users wasting time because they must deal 
with confusing commands

 Loss of data or unwanted exposure of data

Work delay

 Financial cost

 Unanticipated exposure to data leakage or 
compromise; can result in significant liability if 
consumers' personal identifying information 
(PII) compromised

 Data not being encrypted as intended or being 
visible to unauthorized users

47 Copyright © 2018 M. E. Kabay.  All rights reserved.

Control (Command) 
Structure (2)

Some common errors listed in §38.4.1.13 
include:

 Inability to move between menus

 Confusing and repetitive menus

 Failure to allow adequate command-line 
entries

 Requiring command-line entries that are 
neither intuitive nor clearly defined on 
screen

 Failure of the application program to 
follow the operating system's conventions

 Failure to distinguish between source and parameter files, 
resulting in wrong values being made available to user 
through interface, or failure to identify source of error

48 Copyright © 2018 M. E. Kabay.  All rights reserved.

Control (Command)
Structure (3)

 Inappropriate use of keyboard, when new programs do 
not meet standard of a keyboard that has labeled 
function keys tied to standard meanings

Missing commands from code and screens resulting in 
user being unable to access information, to utilize 
programs, or to provide for system to be backed up 
and recoverable

 Inadequate privacy or security that can result in 
confidential information being divulged, in complete 
change or loss of data without recoverability, in poor 
reporting, and even in undesired access by outside 
parties



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             9 All rights reserved.

49 Copyright © 2018 M. E. Kabay.  All rights reserved.

Performance (1)

Speed important in interactive software

Problem can include 

Slow response

Unannounced case sensitivity, 

Uncontrollable and excessively frequent 
automatic saves

Inability to save

Limited scrolling speed

50 Copyright © 2018 M. E. Kabay.  All rights reserved.

Performance (2)

Slow operation can depend on (but is not 
limited to)

OS

Other applications running concurrently

Memory saturation and thrashing 

Memory leakage (the failure to deallocate
memory that is no longer needed)

Disk I/O inefficiencies (e.g., reading single 
records from very large blocks),

Program conflicts (e.g., locking errors)

See CSH6 Chapter 52 “Application Controls”

51 Copyright © 2018 M. E. Kabay.  All rights reserved.

Performance (3)

Program designs can make it difficult to 
change their functionality

Response to changing requirements

E.g., database design – defining primary 
index field

Determines how records stored on disk

Can greatly speed access to records 
during sequential reads on key values for 
that index

But can be counterproductive if main 
method for accessing records = sequential 
reads on completely different index

52 Copyright © 2018 M. E. Kabay.  All rights reserved.

Output Format

User cannot change appearance of output

Font

Underlining

Boldface

Spacing

Delays in printing or saving document

Problems in scaling tables, figures, graphs

Errors in displayed precision of numbers

53 Copyright © 2018 M. E. Kabay.  All rights reserved.

Assurance Tools & 
Techniques

Education Resources

See list in CSH6 §38.5.1 p 38.13

Code Examination & Application Penetration 
Testing

White Box 

Black Box

Gray Box

Standards & Best Practices

See 

next 

slides

54 Copyright © 2018 M. E. Kabay.  All rights reserved.

White Box
 AKA glass, structural, open, clear box

 Tests using knowledge of internals

 Advantages of white box testing:

Easy to find out which type of input/data can help in 
testing

Helps in optimizing code

Helps in removing extra (useless) lines of code 
which can bring in hidden defects

 Disadvantages of white box testing:

Skilled tester needed → increases cost

Nearly impossible to look into every bit of code to 
find hidden errors



Introduction to IA – Class Notes

Copyright © 2018 M. E. Kabay                             10 All rights reserved.

55 Copyright © 2018 M. E. Kabay.  All rights reserved.

Black Box (1)
Testing without knowledge of internal workings

AKA behavioral, functional, opaque box, closed 
box

Tester & programmer can be independent of 
one another

Avoid programmer bias toward own work

Test groups often used

Test planning can begin as soon as 
specifications written

56 Copyright © 2018 M. E. Kabay.  All rights reserved.

Black Box (2)

Advantages of black box testing:

More effective on larger units of code than glass 
box testing

Tester needs no knowledge of implementation, 
including specific programming languages

Tester and programmer independent of each 
other

Tests done from user's point of view

Help to expose ambiguities or inconsistencies in 
specifications.

Test cases can be designed as soon as 
specifications are complete.

57 Copyright © 2018 M. E. Kabay.  All rights reserved.

Black Box (3)

Disadvantages of black box testing:

Few possible inputs can actually be tested

Without clear and concise specifications, test 
cases hard to design

Unnecessary repetition of test inputs if the tester 
not informed of test cases programmer has 
already tried. 

May leave many program paths untested

Cannot be directed toward specific segments of 
code that may be very complex

58 Copyright © 2018 M. E. Kabay.  All rights reserved.

Gray Box

Combination of black box testing and white 
box testing

Tester does know some of internal workings 
of software under test

Applies limited number of test cases to 
internal workings of software under test

Then takes black box approach in applying 
inputs to software under test and observing 
outputs

59 Copyright © 2018 M. E. Kabay.  All rights reserved.

Standards & Best Practices

 Consensus

Perform automated testing

Make a test plan

Follow a specific methodology

Test at every stage

Test all system components

 Standards

 ISO 17799, Information Technology: Code of Practice 
for Information Security Management

 ISO/IEC 15408, Evaluation Criteria for IT Security (the 
Common Criteria)

SSE-CMM, System Security Engineering Capability 
Maturity Model

 ISO/IEC WD 15443, Information Technology: Security 
Techniques

60 Copyright © 2018 M. E. Kabay.  All rights reserved.

Now go and 
study


