IS 340 Class Notes

NORWICH

SW Development
& QA

CSH6 Chapter 39

“Software Development and Quality
Assurance”

Diane E. Levine, John Mason, &
Jennifer Hadley

£ Kabay

Introduction s
» Development potentially affects all 6 elements
of Parkerian Hexad
» Usually affects
Qintegrity
DAvailability
QUtility
» COTS (commercial off the shelf) software
often needs to be customized
» Many programs still developed from scratch
» Project managers typically underestimate
QEffects of errors
QTime required to get project right
3 S
SW Devt Lifecycle (SDLC) s

» Overview of SDLC
» Phases of Traditional SDLC
» Classic Waterfall Model
> RAD & JAD

» Integrating Security at
Every Phase

Requlro,n

Analyg; %

SDLC

Software /
System Development
Life Cycle - SDLC

uBjseQ

Copyright © 2019 M. E. Kabay

Topics omcH

> Introduction

» Goals of SW QA

» SW Devt Lifecycle

» Types of SW Errors

» Designing SW Test Cases

» Before Going Into Production
» Managing Change

» Sources of Bugs & Problems

Goals of SW QA e
> IEEE definition of quality: “degree to which ...[x]...
meets customer or user needs or expectations.”
» Uncover All Program Problems
QOAssume they are there — TEST to find them

» Reduce Likelihood that Defective Programs Enter
Production

QOCosts escalate (~10x) with every stage through
which problems are undiscovered or ignored

» Safeguard Interests of Users
QONo point in having software that is irrelevant

QSQA should report at same mgmt level as SW
development

» Safeguard Interests of SW Producers
QAvoid legal liability for failures, damages

£ Kabay

Overview of SDLC

» SW devt projects often large

ONeed orderly process to coordinate efforts
» Phased approach defines milestones

OOften defined using specific documents

QBut in reality, development does not match
strict step-by-step progression

QOften have overlapping stages in different
sections of project

> Different models for development co-exist
QUseful in different contexts

OAdapt to needs for rapid access to early
productivity vs rigid demands for strict controls

All rights reserved.

IS 340 Class Notes

&
Phases of Traditional SDLC **

) B
SDLC
(Software Development
life Cycle) /

Investigation
Analysis
Design

. Coding and debugging
[error in text: “Decoding”]

. Testing
. Implementation
7. Maintenance

B w N

o Ul

Classic Waterfall Model NgRcH

Requirements and analysis
Design
Implementation |
. Testing

. Maintenance

ok wbdPE

&
RAD & JAD (1) NgmIcH

» Overview of Iterative Methodologies
QBased on 80/20 rule of productivity*

v'First 80% of functionality can be built in first
20% of project time

v'Avoid making users wait for perfection — get
them improvements to their work ASAP

QsStronger, continual user involvement
aSmall development teams

QPrototyping software to glean user responses
and suggestions for improvement

QSoftware reuse
DOAutomated tools

9 *Pareto Principle £ b

10

RAD & JAD (2)

» Phases
QORequirements planning
QUser design
QConstruction
QCutover

» Techniques
QJRP (joint requirements planning)
QJAD (joint application design)

Integrating Security at Every }ﬁw
Phase

» Security is not an add-on

» Must be integrated from
start and included at every
phase

» Applies to all development
methodologies

» Reduce project cost by
catching and preventing
problems as early as
possible

QEvery phase multiplies costs of going back
to fix a problem ~10-fold

11 Eaba

12

Types of SW Errors e

»Internal Design or Implementation Errors
»User Interface

2

Copyright © 2019 M. E. Kabay

All rights reserved.

IS 340 Class Notes

13

Internal Design or h

Implementation Errors

» Initialization
» Logic Flow
» Calculation

» Boundary Condition
Violations

» Parameter Passing

» Race Conditions

» Load Conditions

» Resource Exhaustion
> Interapplication Conflicts

» Other Technical Errors

» Regulatory Compliance Considerations

£ Kabay

14

Initialization Errors

» Difficult to find

» Programmer forgets to save
initialization data to disk
BEFORE trying to run
program

0OSo program fails on first
run
QBut works on second try

» Or program may leave out
only certain initial values,
causing funny results on
first run or loop

Power

15

NORWICH

Logic Flow Errors

either
Looks at
Looks’af’rig ariable but has bad value

4 Can also’happéh when execution falls
through'a mjssing end-of-routine marker (e.g.,
RETURN)

16

4=
NORWICH

Calculation Errors

» Wrong formula
» Roundoff errors when
programmer forgets
precision of data fields
QE.g., multiplies a
long-real by a
short-real variable
QThus loses precision
in product
» Variables may be defined
with wrong precision

QE.g., 16 bits instead of 32 bits

17

Boundary Condition
0 0 POUGELNE POLGELINE POLGELNE B
Violations o

> Attempting to read or write - — ’
beyond the end of an array is

viewed as a sign of serious corruption by most
operating systems

QCall a hardware halt instruction — e.g., HP3000
suddendeath() with parm for type of error

» Arrays defined with wrong number of maximum values
QE.g., “year” array with only 365 values
Qln leap year,
v'December 30 is #365
v'Next day tries to roll to 366 > limit
v'Causes process or system crash

» But going under or over any limits can cause
problems

Copyright © 2019 M. E. Kabay

18

Parameter Passing Errors

» Modules / routines / objects must respect
expected / defined variables passed among
them

QPassing wrong types or contents may
cause serious errors

» Can corrupt data (e.g., writing into wrong area
of memory or disk) \

» May affect logical [
flags

» Can switch execution
into aberrant paths

All rights reserved.

IS 340 Class Notes

Race Conditions

» Race condition exists when processes
depend on precise timing for correct
operation — but have no control over timing

» Typical examples
QOLost update problem
ODeadly embrace in locking

» May not notice errors because
overlap may be very short and
S0 occur very rarely

QE.g., if update takes 10 ms but there are
only 100 updates per minute, unlikely that
two users will try to update same record
simultaneously

19 £ty

&

NORWICH

Load Conditions

» Resources are always limited
QStorage
ONumbers of users
QOTotal number of transactions
QThroughput

» Consider
QHigh volume (total work)

QHigh stress (maximum work
in specified period)

LOAD "LIMIT
MAXIMUM

70 %
OF LEGAL
AXLE WEIGHTS

—_—

20 £ Kabay

Resource Exhaustion
» System resources can be used up
acCPU
ORAM
ODisk storage
QoS tables
QSemaphores
» E.g., inadequate RAM

&

NORWICH

QOMay cause thrashing

OMain memory constantly written to virtual
memory on disk and back
QaSlows throughput to rate of disk I/O
instead of RAM and bus speeds
v Typically at least 1000 times slower
21 s

Interapplication Conflicts Ea
» Application program interfaces (APIs) can

change as programs and operating systems

change

» Inconsistencies can develop between
versions of operating system, utilities and
application programs

» Must keep up to date on changes and adapt
to evolving
programming
environment

22 E by

Other Technical Errors

» Interactions with devices
Qlgnoring error codes

QUsing busy or missing
devices

» Must recover gracefully
from abnormal conditions

» Incorrect program

&

NORWICH

compilation (builds)
QUsing old library components

QUsing wrong library (e.g., test version with
debugging code active)

23 £ aba

Copyright © 2019 M. E. Kabay

Regulatory Compliance
Considerations

» Some legislation such as Sarbanes-Oxley
(SOX) may require careful records of all
errors and their remediation

OMust demonstrate due
care and diligence in
preventing harm

QODocument existence and
proper operation of
internal controls

» Failure to keep records may
put organization in serious
legal difficulties

24 Eabn

All rights reserved.

IS 340 Class Notes

&
User Interface Errors e
» Overview of User Interface
» Functionality
» Control (Command) Structure
» Performance
» Output Format

25

@
Overview of User Interface e
» Ul: all aspects of system relevant to user

QUVM: user virtual machine

QScreens, mouse movements, keyboard
functions, print outputs, sounds, colors....

» Problems arise when developers fail to consider
users’ perspective

Q“Who could possibly have thought of doing
that???”

0“Why can’t the **** users figure that out
themselves???”

» Documentation is essential to support users
QOBut also for management and audit purposes

26 £ Kabay

]
Functionality Problems (1) -
» Confusing, awkward, difficult, impossible
» Function is missing
» Undocumented features
» Required information is missing
» Program fails to confirm / respond to valid input
» Errors in output
» Conflicting names for

features
» Too much information x

27

£ Kabay

Functionality Problems (2) e
» Cursor disappears or appears in wrong place

» Screen displays are wrong

> Instructions difficult to find or read

» Identical functions require different
operationsScreens don’t match expected format

» Passwords or other confidential data unprotected
» Impossible to trace

data entry or changes
(bad audit trails)

» Segregation of duties
not enforced

28 £ Kabay

Control (Command) hf .
Structure Errors

» Sequence of operations determined by control
structure

» Errors can confuse users or cause data loss; e.g.,
Qimpossible to move between menus
QConfusing, repetitive, contradictory menus
Qlnadequate command-line entries
QRequiring non-intuitive command-line entries
QODeviating from operating system conventions
QFailure to show correct error messages
QContradicting standard keyboard function keys
QOmitting required commands
QViolating privacy and other security constraints

29 £ b

Copyright © 2019 M. E. Kabay

@

Performance e

» Quality of service (QoS) or
service-level agreements
(SLA) may define required
throughout

QOMaximum response times
QMinimum data throughputs
OMinimum transaction rates

» Rigid designs may impede
rapid response to changing
requirements

QE.g., programming business rules in code
instead of in database metadata

30 £ Kabay

All rights reserved.

IS 340 Class Notes

NORWICH

Output Format

» Printed or screen outputs must be
controllable by user

» Fonts
» Emphasis (bolding, underlining, italics...)

» Spacing w ST
> Tables, graphs, o B
> figures.... \{ FUCUS UN

» Precision of
numeric data

» Output device

31 £ by

¢

Designing SW Test Cases

» Good Tests
» Emphasize Boundary Conditions
» Check All State Transitions
» Use Test-Coverage Monitors
>Seeding | RasiiCacas
» Building The Backnone of Softuare Testing Design &y Q
Test Data
Development

Analysis Requirements

Sets

32

£ Kabay.

Good Tests }%
» Impossible to test program to perfection
QToo costly and lengthy
» But good testing finds most problems

QEmphasize eliminating serious
errors

» Full-disclosure debate

QShould researchers announce
bugs and vulnerabilities to the
world immediately?

QOr should they tell developers
first and give time to fix problems

» Equivalence classes important
QDefine tests that can be considered equivalent
QOExamine design

QE.g., a program may treat all data < boundary same = an

- equivalence class “less than lower limit”

Emphasize Boundary k‘g

Conditions

» Especially important to check boundary data
QOBelow, at and above boundaries

» Also test using different user categories

QAdmin
aRoot / super-user m l!l

QORead-only
» Be especially careful to test for buffer overflows
QWidely used by criminal hackers

QCan insert code into stack of interpreter in long
data input strings

QOExecute unauthorized code

34 £ Kabay

Check All State Transitions }é_
» Every change in data constitutes a state transition
» Map probably state transitions

QTransition probability matrix: from A to B

QOMenu maps show exactly where user can go in
program from each menu

» May not be able to test all possible transitions
QBut can test most likely
transitions first
»> Test every limit "
QTools available for certain EE - s
applications such as Web ’
code
» Test for race conditions

QUse multiple clients

executing automated scripts
35 S

STATE TRANSITION

e

Copyright © 2019 M. E. Kabay

Use Test-Coverage Monitors
> Difficult to track execution

of program during test to test

identify which modules
being run

QPrimitive hand-coding ——
writes log records =

QCall print function with parameter for each routine

QConditional compilation can allow debugging
statements to remain or not

» Better: test-coverage monitors track every line of source
code

QaShow reports of how often every line used

QThus can spot holes in testing

QOr holes in logic — code impossible to reach

QOr unauthorized code (Trojan horses, logic bombs)

E.Kabay

36

All rights reserved.

IS 340 Class Notes

&
Seeding s
» Add known bugs to
program
» Run test

» See if you catch the bugs

» Can also estimate
approximate rate of
capture by looking at
proportion of known bugs

&
Building Test Data Sets sonwc
> DO NOT USE ACTUAL PRODUCTION DATA IN
TESTING!

» You may extract sample data sets from
production data for testing
QOBut keep confidentiality considerations in
mind
QOMay have to anonymize or randomize some
fields (e.g., for Health Insurance Portability and
Accountability Act — HIPAA)
> Ideally, use completely separate test system
OCan use historical data with due attention to
security / privacy

DOAlso supports compliance issues (HIPAA,
SOX...)
38

spotted
37 £ty
: 5 &
Before Going Into Production },

» REGRESSION TESTING!!
QTesting everything you have done before
QODone after every change

» AUTOMATED TESTING!!!

QORepetitive testing difficult for people to monitor effectively
(eyes glaze over)

OAutomated testing far more efficient
QcCan keep track of all errors
QProvide detailed report
» Tracking Bugs from

Discovery to Removal
QFix the bug
QFind out why there was a ¢

bug

QFix the underlying

=5 cause(s) of the bug =

=
Managing Change -
» Change Request
QOrganized documentation of who wants what why when
QAllows prioritization
» Tracking System
QOMake sure that bugs are not forgotten

OAlso gather statistics about where bugs are being found
and of what type — helps diagnosis

QEssential for continuous process improvement
» Regression Testing — as mentioned, always required after
every bug fix
» Documentation
QOEssential for continued smooth operations
QORequired for compliance with legal, regulatory standards

40 £ Kabay

. &
Continuous Process N&Eﬂ.‘, .

Improvement

5 7 Process Improvement Approach

Initiate

Allgnmenl& \Undersmd /Mihat's Possible
Comimitme “As Is” State “ToBE”M

Appreciative From The Future|
Inquiry Process Design

Map ‘ Benchvisit ‘
Current Process
Bm ‘ Develop New
Mebice Process Design
Walk Stakeholder
The Understanding &
Wall Support
41 £ b

Sources of Bugs & Problems k‘gw

> Design Flaws
» Implementation Flaws

» Unauthorized Changes to
Production Code

» Insufficient or Substandard
Programming Quality

» Data Corruption
» Criminal Hacking

42 £ aba

Copyright © 2019 M. E. Kabay

All rights reserved.

IS 340 Class Notes

Design Flaws

» Poor communication between
users and designers

0OKeep good documentation
throughout development
process

QHelps identify breakdown in
communication

» Trying to meet unrealistic
delivery schedules

QOManagers must resist pressure to rush
DAIl of the development stages are important
ORushing may lead to serious errors later

NORWICH

43 e
Unauthorized Changes to
Production Code
» Any unauthorized change to production code
is a serious violation of standard policies

» Should be viewed as sabotage

» Critically important to determine who did it
and why

» Find out how programmer got access to
production code

45 —

47

Data Corruption

ST¥P

CORRUPTION

» Logical corruption
QPoor programming
Qlnvalid data entry

QOBad locking during
concurrent access

Qlllegal access to other process’ data stack
» Physical corruption
QHardware failure
» Analyze all data corruption cases thoroughly
QODocument
QFix underlying problems

£ Kabay

NORWICH

Copyright © 2019 M. E. Kabay

44

NORWICH

Implementation Flaws

» Time pressure a major 5
problem

ODevelopers, testers skimp'
on documentation and
testing

QOEnd up with unrecognized flaws
> Allocate sufficient time to avoid blunders
Rule of thumb:
~60% of software project
should be devoted to TESTING

46

Insufficient or Substandard
Programming Quality

» Testing and support records
may identify who causes
most of the problems in
code

» Or possible that entire
team needs coaching — or
replacement

» Screen programmers carefully
before placing on critical projects

» Use independent team for QA

QDo NOT report QA team to programming
director!

DAvoid serious conflict of interest

£ Kabay

48

¢

Criminal Hacking

> Audit trails (logs) essential tool for analysis of
problems

QConforming to regulatory
& legal requirements

Qincident response
OResearch
» Policies

QArchiving — how long to
keep?

QSecurity — e.g., chained
checksums, encryption

Qintrusion detection systems

All rights reserved.

IS 340 Class Notes

49

Now go and
study

Copyright © 2019 M. E. Kabay 9

All rights reserved.

