
IS 340 Class Notes

Copyright © 2019 M. E. Kabay 1 All rights reserved.

1 Copyright © 2019 M. E. Kabay. All rights reserved.

SW Development
& QA

CSH6 Chapter 39

“Software Development and Quality
Assurance”

Diane E. Levine, John Mason, &
Jennifer Hadley

2 Copyright © 2019 M. E. Kabay. All rights reserved.

Topics

➢ Introduction

➢Goals of SW QA

➢SW Devt Lifecycle

➢Types of SW Errors

➢Designing SW Test Cases

➢Before Going Into Production

➢Managing Change

➢Sources of Bugs & Problems

3 Copyright © 2019 M. E. Kabay. All rights reserved.

Introduction
➢Development potentially affects all 6 elements

of Parkerian Hexad

➢Usually affects

❑Integrity

❑Availability

❑Utility

➢COTS (commercial off the shelf) software
often needs to be customized

➢Many programs still developed from scratch

➢Project managers typically underestimate

❑Effects of errors

❑Time required to get project right

4 Copyright © 2019 M. E. Kabay. All rights reserved.

Goals of SW QA

➢ IEEE definition of quality: “degree to which …[x]…
meets customer or user needs or expectations.”

➢Uncover All Program Problems

❑Assume they are there – TEST to find them

➢Reduce Likelihood that Defective Programs Enter
Production

❑Costs escalate (~10x) with every stage through
which problems are undiscovered or ignored

➢Safeguard Interests of Users

❑No point in having software that is irrelevant

❑SQA should report at same mgmt level as SW
development

➢Safeguard Interests of SW Producers

❑Avoid legal liability for failures, damages

5 Copyright © 2019 M. E. Kabay. All rights reserved.

SW Devt Lifecycle (SDLC)

➢Overview of SDLC

➢Phases of Traditional SDLC

➢Classic Waterfall Model

➢RAD & JAD

➢ Integrating Security at
Every Phase

6 Copyright © 2019 M. E. Kabay. All rights reserved.

Overview of SDLC

➢SW devt projects often large

❑Need orderly process to coordinate efforts

➢Phased approach defines milestones

❑Often defined using specific documents

❑But in reality, development does not match
strict step-by-step progression

❑Often have overlapping stages in different
sections of project

➢Different models for development co-exist

❑Useful in different contexts

❑Adapt to needs for rapid access to early
productivity vs rigid demands for strict controls

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 2 All rights reserved.

7 Copyright © 2019 M. E. Kabay. All rights reserved.

Phases of Traditional SDLC

1. Investigation

2. Analysis

3. Design

4. Coding and debugging
[error in text: “Decoding”]

5. Testing

6. Implementation

7. Maintenance

8 Copyright © 2019 M. E. Kabay. All rights reserved.

Classic Waterfall Model

1. Requirements and analysis

2. Design

3. Implementation

4. Testing

5. Maintenance

9 Copyright © 2019 M. E. Kabay. All rights reserved.

RAD & JAD (1)

➢Overview of Iterative Methodologies

❑Based on 80/20 rule of productivity*

✓First 80% of functionality can be built in first
20% of project time

✓Avoid making users wait for perfection – get
them improvements to their work ASAP

❑Stronger, continual user involvement

❑Small development teams

❑Prototyping software to glean user responses
and suggestions for improvement

❑Software reuse

❑Automated tools

*Pareto Principle 10 Copyright © 2019 M. E. Kabay. All rights reserved.

RAD & JAD (2)

➢Phases

❑Requirements planning

❑User design

❑Construction

❑Cutover

➢Techniques

❑JRP (joint requirements planning)

❑JAD (joint application design)

11 Copyright © 2019 M. E. Kabay. All rights reserved.

Integrating Security at Every
Phase
➢Security is not an add-on

➢Must be integrated from
start and included at every
phase

➢Applies to all development
methodologies

➢Reduce project cost by
catching and preventing
problems as early as
possible

❑Every phase multiplies costs of going back
to fix a problem ~10-fold

12 Copyright © 2019 M. E. Kabay. All rights reserved.

Types of SW Errors

➢Internal Design or Implementation Errors

➢User Interface

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 3 All rights reserved.

13 Copyright © 2019 M. E. Kabay. All rights reserved.

Internal Design or
Implementation Errors

➢ Initialization

➢Logic Flow

➢Calculation

➢Boundary Condition
Violations

➢Parameter Passing

➢Race Conditions

➢Load Conditions

➢Resource Exhaustion

➢ Interapplication Conflicts

➢Other Technical Errors

➢Regulatory Compliance Considerations
14 Copyright © 2019 M. E. Kabay. All rights reserved.

Initialization Errors

➢Difficult to find

➢Programmer forgets to save
initialization data to disk
BEFORE trying to run
program

❑So program fails on first
run

❑But works on second try

➢Or program may leave out
only certain initial values,
causing funny results on
first run or loop

15 Copyright © 2019 M. E. Kabay. All rights reserved.

Logic Flow Errors

➢Error when control passes to wrong routine
or module

➢Can happen when a conditional statement
either

❑Looks at wrong variable or

❑Looks at right variable but has bad value

➢Can also happen when execution falls
through a missing end-of-routine marker (e.g.,
RETURN)

16 Copyright © 2019 M. E. Kabay. All rights reserved.

Calculation Errors

➢Wrong formula

➢Roundoff errors when
programmer forgets
precision of data fields

❑E.g., multiplies a
long-real by a
short-real variable

❑Thus loses precision
in product

➢Variables may be defined
with wrong precision

❑E.g., 16 bits instead of 32 bits

17 Copyright © 2019 M. E. Kabay. All rights reserved.

Boundary Condition
Violations
➢ Attempting to read or write

beyond the end of an array is
viewed as a sign of serious corruption by most
operating systems

❑Call a hardware halt instruction – e.g., HP3000
suddendeath() with parm for type of error

➢ Arrays defined with wrong number of maximum values

❑E.g., “year” array with only 365 values

❑In leap year,

✓December 30 is #365

✓Next day tries to roll to 366 > limit

✓Causes process or system crash

➢ But going under or over any limits can cause
problems

18 Copyright © 2019 M. E. Kabay. All rights reserved.

Parameter Passing Errors
➢Modules / routines / objects must respect

expected / defined variables passed among
them

❑Passing wrong types or contents may
cause serious errors

➢Can corrupt data (e.g., writing into wrong area
of memory or disk)

➢May affect logical
flags

➢Can switch execution
into aberrant paths

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 4 All rights reserved.

19 Copyright © 2019 M. E. Kabay. All rights reserved.

Race Conditions

➢Race condition exists when processes
depend on precise timing for correct
operation – but have no control over timing

➢Typical examples

❑Lost update problem

❑Deadly embrace in locking

➢May not notice errors because
overlap may be very short and
so occur very rarely

❑E.g., if update takes 10 ms but there are
only 100 updates per minute, unlikely that
two users will try to update same record
simultaneously

20 Copyright © 2019 M. E. Kabay. All rights reserved.

Load Conditions

➢Resources are always limited

❑Storage

❑Numbers of users

❑Total number of transactions

❑Throughput

➢Consider

❑High volume (total work)

❑High stress (maximum work
in specified period)

21 Copyright © 2019 M. E. Kabay. All rights reserved.

Resource Exhaustion
➢System resources can be used up

❑CPU

❑RAM

❑Disk storage

❑OS tables

❑Semaphores

➢E.g., inadequate RAM

❑May cause thrashing

❑Main memory constantly written to virtual
memory on disk and back

❑Slows throughput to rate of disk I/O
instead of RAM and bus speeds

✓Typically at least 1000 times slower
22 Copyright © 2019 M. E. Kabay. All rights reserved.

Interapplication Conflicts
➢Application program interfaces (APIs) can

change as programs and operating systems
change

➢ Inconsistencies can develop between
versions of operating system, utilities and
application programs

➢Must keep up to date on changes and adapt
to evolving
programming
environment

23 Copyright © 2019 M. E. Kabay. All rights reserved.

Other Technical Errors

➢ Interactions with devices

❑Ignoring error codes

❑Using busy or missing
devices

➢Must recover gracefully
from abnormal conditions

➢ Incorrect program
compilation (builds)

❑Using old library components

❑Using wrong library (e.g., test version with
debugging code active)

24 Copyright © 2019 M. E. Kabay. All rights reserved.

Regulatory Compliance
Considerations

➢Some legislation such as Sarbanes-Oxley
(SOX) may require careful records of all
errors and their remediation

❑Must demonstrate due
care and diligence in
preventing harm

❑Document existence and
proper operation of
internal controls

➢Failure to keep records may
put organization in serious
legal difficulties

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 5 All rights reserved.

25 Copyright © 2019 M. E. Kabay. All rights reserved.

User Interface Errors

➢Overview of User Interface

➢Functionality

➢Control (Command) Structure

➢Performance

➢Output Format

26 Copyright © 2019 M. E. Kabay. All rights reserved.

Overview of User Interface

➢UI: all aspects of system relevant to user

❑UVM: user virtual machine

❑Screens, mouse movements, keyboard
functions, print outputs, sounds, colors….

➢Problems arise when developers fail to consider
users’ perspective

❑“Who could possibly have thought of doing
that???”

❑“Why can’t the **** users figure that out
themselves???”

➢Documentation is essential to support users

❑But also for management and audit purposes

27 Copyright © 2019 M. E. Kabay. All rights reserved.

Functionality Problems (1)

➢Confusing, awkward, difficult, impossible

➢Function is missing

➢Undocumented features

➢Required information is missing

➢Program fails to confirm / respond to valid input

➢Errors in output

➢Conflicting names for
features

➢Too much information

28 Copyright © 2019 M. E. Kabay. All rights reserved.

Functionality Problems (2)

➢Cursor disappears or appears in wrong place

➢Screen displays are wrong

➢ Instructions difficult to find or read

➢ Identical functions require different
operationsScreens don’t match expected format

➢Passwords or other confidential data unprotected

➢ Impossible to trace
data entry or changes
(bad audit trails)

➢Segregation of duties
not enforced

29 Copyright © 2019 M. E. Kabay. All rights reserved.

Control (Command)
Structure Errors
➢Sequence of operations determined by control

structure

➢Errors can confuse users or cause data loss; e.g.,

❑Impossible to move between menus

❑Confusing, repetitive, contradictory menus

❑Inadequate command-line entries

❑Requiring non-intuitive command-line entries

❑Deviating from operating system conventions

❑Failure to show correct error messages

❑Contradicting standard keyboard function keys

❑Omitting required commands

❑Violating privacy and other security constraints

30 Copyright © 2019 M. E. Kabay. All rights reserved.

Performance
➢Quality of service (QoS) or

service-level agreements
(SLA) may define required
throughout

❑Maximum response times

❑Minimum data throughputs per unit of time

❑Minimum transaction rates

➢Rigid designs may impede
rapid response to changing
requirements

❑E.g., programming business rules in code
instead of in database metadata

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 6 All rights reserved.

31 Copyright © 2019 M. E. Kabay. All rights reserved.

Output Format

➢Printed or screen outputs must be
controllable by user

➢Fonts

➢Emphasis (bolding, underlining, italics…)

➢Spacing

➢Tables, graphs,

➢ figures….

➢Precision of
numeric data

➢Output device

32 Copyright © 2019 M. E. Kabay. All rights reserved.

Designing SW Test Cases

➢Good Tests

➢Emphasize Boundary Conditions

➢Check All State Transitions

➢Use Test-Coverage Monitors

➢Seeding

➢Building
Test Data
Sets

33 Copyright © 2019 M. E. Kabay. All rights reserved.

Good Tests
➢ Impossible to test program to perfection

❑Too costly and lengthy

➢ But good testing finds most problems

❑Emphasize eliminating serious
errors

➢ Full-disclosure debate

❑Should researchers announce
bugs and vulnerabilities to the
world immediately?

❑Or should they tell developers
first and give time to fix problems?

➢ Equivalence classes important

❑Define tests that can be considered equivalent

❑Examine design

❑E.g., a program may treat all data < boundary same → an
equivalence class “less than lower limit”

34 Copyright © 2019 M. E. Kabay. All rights reserved.

Emphasize Boundary
Conditions
➢Especially important to check boundary data

❑Below, at and above boundaries

➢Also test using different user categories

❑Admin

❑Root / super-user

❑Data entry

❑Read-only

➢Be especially careful to test for buffer overflows

❑Widely used by criminal hackers

❑Can insert code into stack of interpreter in long
data input strings

❑Execute unauthorized code

35 Copyright © 2019 M. E. Kabay. All rights reserved.

Check All State Transitions
➢Every change in data constitutes a state transition

➢Map probably state transitions

❑Transition probability matrix: from A to B

❑Menu maps show exactly where user can go in
program from each menu

➢May not be able to test all possible transitions

❑But can test most likely
transitions first

➢ Test every limit

❑Tools available for certain
applications such as Web
code

➢ Test for race conditions

❑Use multiple clients
executing automated scripts

36 Copyright © 2019 M. E. Kabay. All rights reserved.

Use Test-Coverage Monitors
➢Difficult to track execution

of program during test to
identify which modules
being run

❑Primitive hand-coding
writes log records

❑Call print function with parameter for each routine

❑Conditional compilation can allow debugging
statements to remain or not

➢Better: test-coverage monitors track every line of source
code

❑Show reports of how often every line used

❑Thus can spot holes in testing

❑Or holes in logic – code impossible to reach

❑Or unauthorized code (Trojan horses, logic bombs)

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 7 All rights reserved.

37 Copyright © 2019 M. E. Kabay. All rights reserved.

Seeding

➢Add known bugs to
program

➢Run test

➢See if you catch the bugs

➢Can also estimate
approximate rate of
capture by looking at
proportion of known bugs
spotted

38 Copyright © 2019 M. E. Kabay. All rights reserved.

Building Test Data Sets

➢DO NOT USE ACTUAL PRODUCTION DATA IN
TESTING!

➢You may extract sample data sets from
production data for testing

❑But keep confidentiality considerations in
mind

❑May have to anonymize or randomize some
fields (e.g., for Health Insurance Portability and
Accountability Act – HIPAA)

➢ Ideally, use completely separate test system

❑Can use historical data with due attention to
security / privacy

❑Also supports compliance issues (HIPAA,
SOX…)

39 Copyright © 2019 M. E. Kabay. All rights reserved.

Before Going Into Production
➢ REGRESSION TESTING!!

❑Testing everything you have done before

❑Done after every change

➢ AUTOMATED TESTING!!!

❑Repetitive testing difficult for people to monitor effectively
(eyes glaze over)

❑Automated testing far more efficient

❑Can keep track of all errors

❑Provide detailed report

➢ Tracking Bugs from
Discovery to Removal

❑Fix the bug

❑Find out why there was a
bug

❑Fix the underlying
cause(s) of the bug

40 Copyright © 2019 M. E. Kabay. All rights reserved.

Managing Change

➢ Change Request

❑Organized documentation of who wants what why when

❑Allows prioritization

➢ Tracking System

❑Make sure that bugs are not forgotten

❑Also gather statistics about where bugs are being found
and of what type – helps diagnosis

❑Essential for continuous process improvement

➢ Regression Testing – as mentioned, always required after
every bug fix

➢ Documentation

❑Essential for continued smooth operations

❑Required for compliance with legal, regulatory standards

41 Copyright © 2019 M. E. Kabay. All rights reserved.

Continuous Process
Improvement

42 Copyright © 2019 M. E. Kabay. All rights reserved.

Sources of Bugs & Problems

➢Design Flaws

➢ Implementation Flaws

➢Unauthorized Changes to
Production Code

➢ Insufficient or Substandard
Programming Quality

➢Data Corruption

➢Criminal Hacking

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 8 All rights reserved.

43 Copyright © 2019 M. E. Kabay. All rights reserved.

Design Flaws

➢Poor communication between
users and designers

❑Keep good documentation
throughout development
process

❑Helps identify breakdown in
communication

➢Trying to meet unrealistic
delivery schedules

❑Managers must resist pressure to rush

❑All of the development stages are important

❑Rushing may lead to serious errors later

44 Copyright © 2019 M. E. Kabay. All rights reserved.

Implementation Flaws

➢Time pressure a major
problem

❑Developers, testers skimp
on documentation and
testing

❑End up with unrecognized flaws

➢Allocate sufficient time to avoid blunders

Rule of thumb:

~60% of software project

should be devoted to TESTING

45 Copyright © 2019 M. E. Kabay. All rights reserved.

Unauthorized Changes to
Production Code

➢Any unauthorized change to production code
is a serious violation of standard policies

➢Should be viewed as sabotage

➢Critically important to determine who did it
and why

➢Find out how programmer got access to
production code

46 Copyright © 2019 M. E. Kabay. All rights reserved.

Insufficient or Substandard
Programming Quality

➢Testing and support records
may identify who causes
most of the problems in
code

➢Or possible that entire
team needs coaching – or
replacement

➢Screen programmers carefully
before placing on critical projects

➢Use independent team for QA

❑Do NOT report QA team to programming
director!

❑Avoid serious conflict of interest

47 Copyright © 2019 M. E. Kabay. All rights reserved.

Data Corruption

➢Logical corruption

❑Poor programming

❑Invalid data entry

❑Bad locking during
concurrent access

❑Illegal access to other process’ data stack

➢Physical corruption

❑Hardware failure

➢Analyze all data corruption cases thoroughly

❑Document

❑Fix underlying problems

48 Copyright © 2019 M. E. Kabay. All rights reserved.

Criminal Hacking

➢Audit trails (logs) essential tool for analysis of
problems

❑Conforming to regulatory
& legal requirements

❑Incident response

❑Research

➢Policies

❑Archiving – how long to
keep?

❑Security – e.g., chained
checksums, encryption

❑Intrusion detection systems

IS 340 Class Notes

Copyright © 2019 M. E. Kabay 9 All rights reserved.

49 Copyright © 2019 M. E. Kabay. All rights reserved.

Now go and
study

