

CSH5 Chapter 55 Peter R. Stephenson

Topics

- Introduction
- End-to-End Digital Investigation
- Applying Framework & EEDI
- Using EEDI & Framework
- Motive, Means, & Opportunity: Profiling Attackers

NORWI

- Some Useful Tools
- Concluding Remarks

INTRODUCTION

NORWIC

- Cyber Investigation Evolves
- > Defining Cyber Investigation
- > Distinguishing Between Cyber Forensics & **Cyber Investigation**
- DFRWS Framework Classes

Cyber Investigation Evolves NORWIG

- > Cyber investigation aka digital investigation
- > Early phases (before 2000) used term as equivalent to computer forensics
 - **u**"The investigation of a computer system believed to be involved in cybercrime." -Computer Desktop Encyclopedia
 - □But cyber investigation now distinct discipline, not just a set of techniques
 - □American Academy of Forensic Science recognizes forensic computer-related crime investigator

A Note on Etymology (added by Kabay)

fo-ren-sic [fə rénssik, fə rénzik] adjective

- 1. crime-solving: relating to application of science to decide questions arising from crime or litigation; forensic evidence
- 2. of debating: relating to debate & formal argumentation; forensic oratory

[Mid-17th century. < Latin forensis "of legal proceedings" < forum "forum" (as a place for discussion)]

Microsoft® Encarta® 2008. © 1993-2007 Microsoft Corporation. All rights reserved.

Defining Cyber Investigation (2)

- Cyber investigation relies on taxonomy (tax-on-o-my) [tak sónnemee] (plural tax-on-o-mies) noun
- grouping of organisms: science of classifying plants, animals, & microorganisms into increasingly broader categories based on shared features. Traditionally, organisms were grouped by physical resemblances, but in recent times other criteria such as genetic matching have also been used.
- 2. principles of classification: practice or principles of classification
- 3. study of classification: study of rules & practice of classifying living organisms

[Early 19th century. < French taxonomie < Greek taxis (see taxis)] Microsoft® Encarta® 2008. © 1993-2007 Microsoft Corporation. All rights reserved.

Rogers' Taxonomy (1)

- Two major classes
 - □Profession structure of human endeavors

NORWI

□Technology – subjects of investigation

Benefits

橋

NORWICH

- Supports understanding of concepts
 Each additional sub-category supports more detail in analysis
- Framework encourages thorough attention to details
- Can serve as a checklist to avoid overlooking evidence
- □Supports analysis of cyber crime

DFRWS Framework Classes

- Digital Forensics Research WorkShop (2001)
- Framework for digital investigation
- Supports end-to-end digital investigation (EEDI)
- Each class comprises elements

Event/Crime detection Case management Preservation Preservation Preservation Documentation Resolve signature Imaging technologies Approved methods Traceability Traceability Expert testimony	
Profile detection Chain of custody Approved software Validation techniques Statistical Calification Constraints Aconolous detection Time synchronization Approved condervance Film (schinques Statistical Calification (schinques) Complaints Legal authority Pattern matching Data miningue at schingues Data miningue at schingues Time internet schingues Statistical interpret Addit anadysis Sampling Data miningues Fisiden data discurvey Statistical interpret Data miningues Experimentation Fisiden data discurvey Statistical interpret Statistical interpret	untermeasu

DFRWS Class: Identification	NORWICH
How investigator is notified of potential in	cident
-half of reports of possible security breaches turn to be crimes	rn out not
Framework classes in Identification	
Event/crime detection: direct evidence (e.g., disc unauthorized access)	covery of
Resolve signature: intrusion detection/preventio systems, gateway security devices using patterr recognition	
Profile detection: heuristic pattern recognition; a scenarios, attack profiles	attack
Anomalous detection: deviation from observed r	norms
□Complaints: person reports event or results of e	vent
System monitoring: situational awareness proce	esses
12 Audit analysis: analysis of log files	

德

NORWICH

DFRWS Class: Preservation

Management of evidence ensuring integrity

Case mgmt: notes, process controls, quality controls, procedural issues

隋

NORWIC

橋

橋

NORWICH

NORWIC

- Imaging tech: making bit-for-bit image copies of evidence
- Chain of custody: preventing unauthorized access to & modification of evidence – preservers evidentiary value
- Time synchronization (normalization):
 Ensuring that all time records use a common base time
 - □No evidence modified
 - Determine offsets from a baseline (e.g., "- 0:00:07.6 GMT-5" for 7.6 seconds behind GMT-5)

DFRWS Class: Collection (1)

Approved methods:

- □General acceptance by courts
- □E.g., qualifying under *Daubert* rule for admission of technical information – see CSH5 Ch 73
- Or qualified under current case law
- Approved software: source code identical to that of tool that has qualified in courts (see above)
- > Approved hardware: same principles as above
- Legal authority: policy (e.g., for owner of equipment), subpoena, warrant
- Lossless compression: provable fidelity

DFRWS Class: Collection (2)

- Sampling: demonstrated validity & safety for data
- Data reduction:
 - □Valid, repeatable, provable results
 - □Applied only to *copies* of evidence
- Recovery techniques
 - Extraction of useful data from data repositories
 - **Comply with all court-permitted techniques**
 - Forensic investigators must keep up to date with current case law

<section-header>DFRWS Class: Examination (1) • Traceability or chain of evidence • Clear documentation of reasoning linking evidence to other evidence (not conclusions) • Traceability & continuity of chain of evidence crucial to credibility of conclusions • Distinct from chain of custody! • Validation techniques • Corroboration • May involve demonstration of internal consistency • Resistance to claims that evidence has been modified or fabricated

DFRWS Class: Examination (2)

Filtering techniques

- □ Sometimes source filtering (e.g., IDS) eliminates some data in stream
 - ✓ Must supply courts with evidence of techniques used
 - ✓ Demonstrate validity of remaining records
- □ Also refers to extraction of relevant data types (e.g., images) from data
 - ✓ May include comparison using hashes
 - ✓All such tools & techniques must be understood by investigator / examiner
 - ✓ Understanding includes clear grasp of appropriate usage & a reasonable grasp of underlying principles (see Daubert Rule)

DFRWS: Analysis

"Fusion, correlation & assimilation of material for reasoned conclusions." 唐

NORWIC

語

橋

NORWIC

- Tying together evidence into coherent & probably correct scenario of events
- Ideally use accepted standards for processes of deduction & induction
 - Deduction: reaching a conclusion by applying rules of logic
 - Induction: forming a generalization based on observed evidence

DFRWS: Presentation Reporting facts with organization, clarity, conciseness, & objectivity Organization: using a comprehensible structure Clarity: unambiguous, easily understood communication Conciseness: using fewest words possible to supply necessary information Objectivity: free from bias, not trying to convince anyone of a particular interpretation See CSH5 Ch 73 for recommendations on being an expert witness in court

END-TO-END DIGITAL INVESTIGATION

- 1. Collecting Evidence
- 2. Analysis of Individual Events
- 3. Preliminary Correlation
- 4. Event Normalizing
- 5. Event Deconfliction
- 6. Second-Level Correlation
- 7. Timeline Analysis
- 8. Chain of Evidence Construction
- 9. Corroboration

Collecting Evidence NORWI > Approved tools & techniques > Trained technicians Time sensitive > Incidents must be considered in context of prior, concurrent & following events Events are most granular element of incident □Incidents are collection of events that lead or could lead to a compromise □Incident becomes a crime when laws are broken Critical data collection includes □Images of affected computers Logs of intermediate devices (esp. Internet) □Logs of affected computers Logs & data from intrusion detection systems, firewalls etc.

Analysis of Individual Events

- Events may leave records in multiple places
- Analysis assesses value of events to investigation
- Tie events into each other
- Aim to understand incident Put events into coherent narrative

Event Normalizing

NORWIC

- Combine evidentiary data from multiple sources
- Eliminate duplications to ensure each unique event is correctly represented once in timeline & causal sequence

Event Deconfliction Some events have multiple repetitions of identical or near-identical steps E.g., denial-of-service attacks may have 1000s of similar or identical packets flooding perimeter These may be defined as *subevents* If reasonable, may define multiple subevents é.g., probes Ithat occur in a defined time period é.g., 48 seconds as a single event é.g., "Denial-of-service"

Second-Level Correlation

- Normalization & deconfliction should support creation of a coherent picture of events
- Second-level correlation of remaining data establishes a basis for building chains of evidence

语

NORWIG

APPLYING THE FRAMEWORK & EEDI

- ≻Overview
- Supporting EEDI Process
- >Investigative Narrative
- Intrusion Process
- Describing Attacks
- Strategic Campaigns

Overview

唐

語

橋

NORWICH

NORWIC

NORWIC

- Evidence management is paramount
- DFRWS Framework & EEDI
 - □Help manage evidence
 - □Not substitute for good investigation
- > Incident may be crime or not
 - DEven if crime, might not be prosecuted □E.g., corporation may decide not to pursue civil complaint

NORWI

NORWI

Supporting EEDI Process

- > Traditional investigators often resist process
- > Prof Stephenson's research finds practice conforms to his recommendations
- Thus DFRWS Framework & EEDI can serve traditional investigators entering world of cyber investigation
- > Provide guidance on sequence of actions in investigation

Investigative Narrative

- > Investigator's detailed notes
- > EEDI supports construction of investigation using framework(s)
- > DFRWS Framework helps focus attention on all elements of situation
- > E.g., DFRWS Collection class refers to authorized/approved methods
- □Therefore must be careful to use accepted. standard software, hardware & methods □Basis is case law – acceptance by courts

Intrusion Process

- Details of specific attacks vary increasingly blended
- But in general, attacks include
 - □ Information gathering: research, locating IP addresses, superficial scans
 - □ Footprinting: scanning IP addresses for visible devices □ Enumerating: probes/scans to document operating
 - systems & other details of exposed systems
 - □ Probing for weaknesses: vulnerability scans or socialengineering attacks
 - Penetration: obtaining unauthorized access
 - Backdoors, Trojans, rootkits: payload deposited for immediate or later exploitation
 - Cleanup: wiping tools, altering logs, generally covering tracks

语 **Describing Attacks (1)** NORWIG > Various attack taxonomies available □But no generally accepted language > Howard's Taxonomy (CSH5 Ch 8) □Simple, concise □Good starting point

Describing Attacks (2)

NORWIC

- > Description of attack: events, targets, vulnerabilities
- > Type of attack: exploit, denial-of-service,
- reconnaissance
- Attack mechanism: how accomplished
- Correlations: comparison with other attacks, current attacks
- Evidence of active targeting: generic or specific
- Severity = Target Criticality + Attack Lethality System countermeasures – Network Countermeasures
 - □Rough guesses
 - □Usually lowest 1 to 5 highest
 - □Heuristic purposes only not analytical or
 - rigorous

Describing Attacks (3)

Informal template for early interviews

- 1. Nature of incident?
- 2. How to be sure there really was an incident?

NORWI

NORWIG

- 3. What was/were entry point(s) to system?
- 4. What kind of evidence are we looking for in this context?
- 5. What monitoring systems may have collected evidence?
- 6. What legal issues are relevant?
- 7. Who could have caused or allowed incident?
- 8. What security was in place at time?
- 9. What nontechnical (business) issues may have affected attack?
- 10. Who knew about attack & when?

Strategic Campaigns (1)

- Attack may be isolated
- > But may be a tactic in a larger strategy; e.g.,
 - □Spam
 - Identity theft
 - Hacktivism
 - □Cyber war
- Differences between tactical attack & strategic campaign
 - 1. Single objective vs ongoing objectives
 - 2. Low-hanging fruit vs sustained efforts
 - 3. Trivial vs complicated targets & objectives

Distinct phases

- 1. Mapping & battle space preparation
- 2. Offensive & defensive planning
- 3. Initial execution
- 4. Probes & skirmishes
- 5. Adjustment & sustainment
- 6. Success & termination

Motive (1)

- Understanding motive may help
 Understand/analyze attack
 Narrow down field of possible attackers
 Identical attacks may have different motives
- Outcomes may differ significantly
 Seeking revenge: embarrass victim
 Seeking profit: extort money from victim
- Groups may behave differently from individuals

傳

NORWIC

EXHIBIT 55.8	FBI Adversarial Matrix R	esource Characteristics	
Category of Offenders	Training Skills	Minimum Equipment Needed	Support Structure
Groups	High level of informal training	Crackers Basic computer equipment with modem	Peer group support
Individuals	Expertise gained through experience	Basic computer equipment with modem	BBS, information exchanges
		Criminals	
Espionage	Various level of expertise	Basic computer equipment with modem, in some cases, uses more sophisticated	Support may come from sponsoring intelligence agency
Fraud/Abuse	Some programming experience	devices Computer with modem or access to target computer	Peer group support, possible organized crime enterprise
		Vandals	
Strangers	Range from basis to highly skilled	Basic computer equipment with modem	Peer group support
Users	Some computer expertise, knowledge of programming ranges from basic to advanced	Access to targeted computer	None

Opportunity

- Opportunity helps determine if suspect is credible perpetrator
- Includes knowledge of victim system
- Insiders or confederates of insiders should be examined
- External groups may be involved DE.g., Anonymous or LulzSec

SOME USEFUL TOOLS

NORWI

- ≻The Usual Toolkit
- ≻Link Analysis
- Attack-Tree Analysis
- ≻Modeling
- Statistical Analysis

Modeling: CPN (2)

NORWICH

傳

NORWIC

- Graphical language -- constructing models of concurrent systems & analyzing properties
- Foundation of graphical notation & basic primitives for modeling concurrency, communication, & synchronization
- Standard ML -- definition data types, describing data manipulation, & creating compact models
- Typical application domains: communication protocols, data networks, distributed algorithms, embedded systems, business processes, workflows, manufacturing systems, & multi-agent systems
- Simulation-based performance analysis delays, throughput, & queue lengths in system are investigated

http://cs.au.dk/CPnets/

Statistical Analysis

- > Statistical methods & probability analysis of great value
- > Look for anomalies events with low probability if not related to crime & high probability if related
- Calculate probabilities of sequences of events; e.g., if faced with n events, each with probability p_i,
 - ✓ Probability that all events would occur simultaneously or in sequence by chance alone:
 P{all} = Πp_i → pⁿ for identical p_i
 - ✓ Probability that at none of events would occur simultaneously or in sequence by chance alone: P{none} = Π(1 p_i) → (1 p)ⁿ for identical p_i
 - ✓ Probability that at least one of events would occur simultaneously or in sequence by chance alone: P{>=1} = 1 - $\Pi(1 - p_i) \rightarrow 1 - (1 - p)^n$ for identical p_i

DISCUSSION

NORWIG