SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC
Test-Case

Design

M. E. Kabay, PhD, CISSP
Director of Education, NCSA
President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved



Test-Case Design

. Design Philosophy

. Equivalence class analysis
. Boundary analysis

. Testing state transitions

. Testing race conditions and other time
dependencies

. Function-equivalence testing
. Regression testing
. Error-guessing



Test-Case Design Philosophy

. Complete testing is impossible

. Therefore define subset of test cases likely to
detect most (or at least many) errors

. Intuitive approach is “random-input testing”
_ sit at terminal
- invent test data at random
- see what happens
_ worst possible approach



Equivalence Partitioning

. “A group of tests forms an equivalence class
if you believe that:

- They all test the same thing.

- If one test catches a bug, the others
probably will, too.

_ If one test doesn’t catch a bug, the others
probably won’t either.”

- p. 126
. Subjective process

. Goal is to reduce many redundant tests to a
smaller number giving same information

. Focus especially on invalid inputs



Equivalence Partitioning

Must first identify the equivalence classes
. Range: below, within, above

. Number: fewer, valid, higher

. Set: all members & 1 non-member

. Requirement (set of 1): valid & invalid

. On doubt, split class



Equivalence Partitioning

Then define specific test cases

. At least one test case for every valid
equivalence class

. At least one test case for every invalid
equivalence class

. See Figure 7.1, p. 127 in text



Boundary-Value Analysis

. Cases at boundaries have high value for
testing

. Select cases just below, at and just above
limits of each equivalency class

. Some testers include mid-range value as well
just for additional power of test



Testing State Transitions

. Every change in output is a state transition
. Test every option in every menu

. If possible, test every pathway to every option
In every menu

. Interactions among paths
_ draw menu maps

- identify multiple ways of reaching every
state

~ keep careful records of what you test (can
get confusing)



Testing Race Conditions and
Other Time Dependencies

. Check different speeds of input

. Try to disrupt state transitions (e.g, press
keys while program switches menus)

. Challenge program just before and just after
time-out periods

. Apply heavy load to cause failures (not just
poor performance)



Function-Equivalence
Testing

. Use a program that produces known-good
output

. Feed same inputs to both the standard
program and the program under test

. Compare the outputs

. Automated testing techniques can help
- for numerical and alphanumerical output
_ for real-time process-control applications



Regression Testing

. Did the bug get fixed?
- Some programmers patch symptom
- Few test effectively

. Check that you can produce bug at will in bad
version of code

. Use same tests on revised code
- Stop if bug reappears

- Push the testing if bug seems to have been
fixed



Error Guessing

. Need intuitive grasp of what is likely to go
wrong in a program

. Look at typically difficult cases (e.g., wrong
number of parameters)

. Examine cases that are not explicitly defined
In specifications (assumptions by
programmer)



