
SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Test-Case
Design

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Test-Case Design

Design Philosophy
Equivalence class analysis
Boundary analysis
Testing state transitions
Testing race conditions and other time
dependencies
Function-equivalence testing
Regression testing
Error-guessing

Test-Case Design Philosophy

Complete testing is impossible
Therefore define subset of test cases likely to
detect most (or at least many) errors
Intuitive approach is “random-input testing”

– sit at terminal
– invent test data at random
– see what happens
– worst possible approach

Equivalence Partitioning

“A group of tests forms an equivalence class
if you believe that:

– They all test the same thing.
– If one test catches a bug, the others

probably will, too.
– If one test doesn’t catch a bug, the others

probably won’t either.”
-- p. 126

Subjective process
Goal is to reduce many redundant tests to a
smaller number giving same information
Focus especially on invalid inputs

Equivalence Partitioning

Must first identify the equivalence classes
Range: below, within, above
Number: fewer, valid, higher
Set: all members & 1 non-member
Requirement (set of 1): valid & invalid
On doubt, split class

Equivalence Partitioning

Then define specific test cases
At least one test case for every valid
equivalence class
At least one test case for every invalid
equivalence class
See Figure 7.1, p. 127 in text

Boundary-Value Analysis

Cases at boundaries have high value for
testing
Select cases just below, at and just above
limits of each equivalency class
Some testers include mid-range value as well
just for additional power of test

Testing State Transitions

Every change in output is a state transition
Test every option in every menu
If possible, test every pathway to every option
in every menu
Interactions among paths

– draw menu maps
– identify multiple ways of reaching every

state
– keep careful records of what you test (can

get confusing)

Testing Race Conditions and
Other Time Dependencies

Check different speeds of input
Try to disrupt state transitions (e.g, press
keys while program switches menus)
Challenge program just before and just after
time-out periods
Apply heavy load to cause failures (not just
poor performance)

Function-Equivalence
Testing

Use a program that produces known-good
output
Feed same inputs to both the standard
program and the program under test
Compare the outputs
Automated testing techniques can help

– for numerical and alphanumerical output
– for real-time process-control applications

Regression Testing

Did the bug get fixed?
– Some programmers patch symptom
– Few test effectively

Check that you can produce bug at will in bad
version of code
Use same tests on revised code

– Stop if bug reappears
– Push the testing if bug seems to have been

fixed

Error Guessing

Need intuitive grasp of what is likely to go
wrong in a program
Look at typically difficult cases (e.g., wrong
number of parameters)
Examine cases that are not explicitly defined
in specifications (assumptions by
programmer)

