
SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Course Overview

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Software Quality Assurance
Course Outline

Textbook
Syllabus
Evaluation
Expectations

Textbook

Kaner, C., J. Falk, & H. Q. Nguyen (1993).
Testing Computer Software, Second Edition.
International Thomson Computer Press (London).
ISBN 1-85032-847-1. xv + 480. Index.

Syllabus -- Lectures
Day 1

Software QA Case Studies
Philosophy and psychology of QA
Inspections / Walkthroughs / Reviews

Day 2
Types of testing

– Module (Unit) Testing
– Higher-Order Testing

Types of errors
Day 3

Designing good tests
Automated testing

Syllabus -- Readings
Day Chapters. . .
1 1: An example test series

2: The objectives and limits of testing
14: Legal consequences of defective

software
2 3: Test types and their place in the

software
development process

4: Software errors
Appendix: Common software errors

3 7: Test case design
11: Testing tools
13: Tying it together

Expectations
Classes begin sharp 08:59:45 & end no later
than 13:59 (but expecting 11:45)

– Do not be late
– Absence from class requires valid

explanation else expulsion from course
Scan chapters in preparation for next day
Read chapters at end of day and review using
class notes
Write out answers to review exercises from
instructor and submit for credit
Group submissions not accepted: write out
answers in your own words (and not merely
blindly copied from textbook).

Evaluation

Submit answers to exercises by 09:00 each day +
at Cont. Ed. reception desk on the day after Day 3
25% off per hour or part of hour thereafter for late
submissions.
Teacher wants entire class to get 100%

Disclaimers

The Instructor has free access to CompuServe because
of services as Chief Sysop of the NCSA Forums on
CompuServe. The National Computer Security Association
receives royalties calculated on total amount of time spent by
users logged into the NCSA Forums on CompuServe. Except
for these benefits, JINBU Corporation and the National
Computer Security Association derive no benefit whatsoever
from the purchase or other use of the services and products
named in this course, nor do JINBU Corporation or the
National Computer Security Association own any part of any
companies or organizations selling or marketing these
services and products. JINBU Corporation and the NCSA
make no recommendations of products or services except on
contract for specific clients.

A Preliminary Test
Here is a triplet of numbers that follows a
secret rule:

– 2,3,5
Formulate an hypothesis about what
underlying rule generates these numbers
Write down a set of 3 other triplets that will
help you decide whether your rule is correct;
ask the instructor if your triplets are OK
(accord with the actual underlying rule) or
not.
After the class discussion, write down your
comments on what you have learned from
this exercise and submit your notes tomorrow
morning

SOFTWARE QUALITY
ASSURANCE

John Abbott College

Quality Assurance
Failures

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Quality Assurance Failures
Intuit -- Feb 96
Chase Manhattan -- Mar 96
California Demographics -- May 96
Washington DC traffic -- May 96
First Natl Bank Chicago -- May 96
ISP Outages -- June - Dec 96
Microsoft Files Offensive in Spanish -- July 96
General Motors Recall -- July 96
Stock Exchange Problems July - Dec 96
Ent Federal Credit ATMs -- Oct 96
WorldNet Outage -- Nov 96
Amtrak Reservations -- Nov 96
CIBC Debit Cards -- Nov 96

Intuit Tax Software

Intuit Inc -- Feb 96
Calculations wrong in US tax-preparation
software

– TurboTax
– MacInTax

Updates on Web site
– workarounds
– pay penalties

Chase Manhattan --

Mar 96 -- New York Times
Letter intended to go to 89 credit-card
customers

– let them know their accounts default
Went to 11,000 (of a total of 13,000)
customers in error

– users of secured credit-cards

California Demographics
May 96 -- RISKS 18.10

CA legislator constantly receiving mail for
single parents
Algorithms in state demographics programs

– include assumption that different parental
surnames on a birth certificate mean
parents were not married to each other

Credibility of statistics in doubt
Dec 96: similar furor over Consumer Price
Index definitions

– rooted in agricultural/industrial past
– not suitable for post-industrial service /

information economy

Washington DC traffic

May 96 -- Washington Post
New version traffic-control software
Switched to wrong pattern

– from rush-hour (50 seconds of green)
– to the weekend cycle (15 seconds of green)

Resulting chaos doubled many people's
commute time
Estimate $$ cost to economy. . . .

First Natl Bank Chicago

May 96 -- AP
Single largest accounting error in history

– 900 customers received erroneous transfer
– $900M each

Total error $763.9B

ISP Outages

June 96 -- Reuters; RISKS 18.23; others
Netcom

– major Internet Service Provider
– 13-hour blackout on 18 June
– 1000s customers unable to receive / send

e-mail
– Share price fell from $33.24 to $28.75

AOL
– went down 1 hr day after Netcom’s

problem when new software installed
– also down 19 hr in Aug 96

Microsoft Files Offensive in
Spanish

July 96 -- AP
Microsoft provides “localized” versions of
thesaurus, dictionary, & speller
Spanish translations caused uproar in Mexico

– synonyms for “Indian” offensive; e.g.,
“savage” and “man-eater”

– “vicious” and “inverted” for “homosexual”
– “vicious” and “pervert” for “lesbian”

Public relations disaster
Company scrambled to provide substitute
files

General Motors Recall

July 96 -- RISKS 18.25
Major problem with engine software

– could result in a fire
1996 and 1997 model years
292,860 Pontiacs, Oldsmobiles and Buicks

Stock Exchange Problems
July - Dec 96

July -- Johannesburg exchange down twice
– new software being installed

Oct -- Cairo Bourse
– new software
– significant drop in share prices

Dec -- Hong Kong Stock Exchange
– error in automated calculations of index
– caused panic selling

Ent Federal Credit ATMs

Oct 96 -- RISKS 18.53
Software

– failed to register multiple identical
withdrawals

– from same account on same day
– registered only 1st withdrawal

Consequences embarrassing
– had been told repeatedly by customers

months before
– forced to debit 12,000 accounts by $1.2M in

total

Amtrak Reservations

Nov 96 -- RISKS 18.64
On 29 Nov, Amtrak lost access to natl
reservation & ticketing software
Just before heaviest travel period of year
Agents usually had no paper schedules or
fares
Lack of backup caused major delays in
helping customers

CIBC Debit Cards

Nov 96 -- RISKS 18.65
30 Nov in Ontario
Major Canadian bank’s debit-card system
failed several hours
Flaw in software upgrade
Half of all transactions across eastern Canada
were prevented

Miscellany & Fun
2 Belindas -- Feb 96

– NZ women w/ identical names and birthdates
Jewish Publication Society -- May 96

– Judaica CD-ROM got Christian screen saver
Baby Bonus from IRS -- June 96

– Pittsburgh 3-yr- old got $219,495 income-tax
refund

XXX Jeopardy -- June 96
– Chicago cable TV showed porn in middle

Dentist’s Patience is Taxed -- Dec 96
– 16,000 copies of same tax form delivered

DISCUSSION

Were you surprised by the QA errors you have
studied today?
What do you think the effects of these QA
failures were on

– the organizations involved?
– the programming managers?
– the programmers responsible for the bad

code?
Why do you think these errors became public?
What lessons do you draw from these cases for
your own work?

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Psychology &
Economics
M. E. Kabay, PhD, CISSP

Director of Education, NCSA
President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Psychology & Economics of
Program Testing

Definitions & Orientation
Economics
Testing Principles

Definitions & Orientation

Trying to find errors
NOT trying to show there are no errors
Successful test finds errors
Problems of language and psychology

Economics of Testing

Costs of errors
– roughly 10x increase at every level of

development
– analysis, design, coding, implementation

Costs of finding errors
– must balance cost of error vs cost of

finding error
– possible test cases usually infinite
– impossible to locate all errors
– unnecessary to locate all errors: just

significant ones

Economics of Testing

Black-Box Testing
– derive test data from specifications only
– use exhaustive input testing
– but include all possible wrong inputs too
– time and money constraints make it

impossible to test everything
White-Box Testing

– try to execute all possible execution paths
– but astronomically high # paths
– and have to multiply by # of inputs

Some Principles of Testing

Define expected values
Use independent testers
Pay attention to every result
Include invalid and unusual inputs
Look for forbidden results
Record test cases for re-use
Errors bespeak more errors
80/20 rule (Pareto Principle)

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC
Program Inspections,

Walkthroughs & Reviews

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Human Testing

Highly effective
– apply after analysis/design
– before coding
– catch errors early = cheaper & better

correction
Inspections
Walkthroughs
Desk Checking
Peer Rating

Inspections

Gerald M. Weinberg (1971). The Psychology
of Computer Programming. Van Nostrand
Reinhold (New York). ISBN 0-442-29264-3. xv
+ 288. Index.
Team approach

– moderator
– programmer
– designer
– QA specialist

Synergy

Inspections

Purpose:
– find errors
– find reasons errors were made
– not to fix the errors right then

Effective
– find 30%-70% of all errors found by end of

testing process
– complementary to machine-execution

testing
Especially effective for testing modifications

Inspections

Moderator
Competent programmer
Not author of program
Distributes materials for inspection
Facilitates session
Records results
Manages repair later

Inspections

Narration
Programmer explains every line of code
Focus on branch points and operations
Other members question logic
Suggest exceptions
Identify errors
Do not allow programmer to correct errors
during session

– Alternative view: bug-fixing leads to
further analysis

Inspections

Prevent interruptions
Limit sessions to 90-120 minutes
Average speed 150 3GL statements/hour

– 4GL may have fewer statements/hour
Expect repeated sessions

Inspections

Psychological Issues
Defensiveness is a disaster

– Adopt ego-less attitude
– Pride in identifying errors

Results should be confidential
– Do not allow management to use #errors

as metric of programmer quality
Other Benefits

– Improved programming style in group
– Identify error-prone sections

Walkthroughs

The Walkthrough Team
Moderator
Secretary
Expert programmer
Language expert
Novice
Maintenance programmer
Programmer from another project

Walkthroughs

Distribute materials in advance
“Play Computer”
Use prepared set of test cases
Mark state of memory etc. on paper or in
spreadsheet(s)
Test cases are merely framework for
questions
Discussions with programmer most
productive

Desk Checking

Ineffective for most people
We see what we expect program to do
Schema influences perception
Trading programs marginally better

Peer Rating

Not a program testing-method
Good example of Continuous Improvement or
TQM
Choose examples of best and worse code
Distribute two anonymous samples at random
Share analysis and commentary
Fosters positive attitude towards
improvement

Homework

Read Chapters 1, 2 and 14 from your textbook
Answer all the review questions distributed
by the instructor

– Avoid copying the textbook blindly -- you
will not remember as much as if you think
about the answers yourself

– Use simple language; usually a few words
or sentences will be ample

Submit your work by 09:00 tomorrow
morning.
Because of the short time available, do not be
late in submitting your review answers

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Module (Unit)
Testing

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Module Testing

Definition
Benefits of Module Testing
How to Combine Modules?
Non-Incremental Testing
Incremental Testing
Top-Down vs Bottom-Up
Performing the Test

Definition

Module Testing = Unit Testing
Large programs cannot practically be tested
all at once
Break down programs into modules
Test modules individually as first phase

Benefits of Module Testing

Manage complexity of testing
Facilitates debugging
Encourages parallel testing

How to Combine Modules

Non-incremental
– test all modules independently
– then combine all modules and test whole

program
Incremental

– add each module to tested collection
– stepwise retesting

Testing Modules Alone

How can we execute a subroutine by itself?
A driver program

– calls a module and
– passes parameters to it

A stub program
– represents an as-yet missing module
– not simply a place-holder
– must receive data from calling module
– must return valid values to calling module

Incremental Testing

Detects errors in passing parameters among
modules
Helps locate bugs quickly
Multiple passes through tested modules can
lead to more thorough testing
General sense is that incremental testing is
superior to non-incremental testing

Top-Down vs Bottom-Up

How to add modules?
Top-down

– start with master/main/principal module
– add subordinate (called) modules one at a

time
– need stubs for lower modules

Bottom-up
– start with the modules that call no others
– add superior (calling) modules one at a

time
– need drivers for upper modules

Top-Down Tests

Practical Issues
How to pass more than one value from a stub
to the module under test?

– write several versions of the stub
Add critical modules as soon as possible

– get it fixed early to prevent later problems
Add I/O modules ASAP

– enable one to enter test values
– can print or display test results

Bottom-Up Tests

Problem: no complete skeleton program until
end of testing
Benefits

– no limitations on test data (no upper
modules)

– do not need separate stubs for different
values of test data

Performing the Test

Review test cases before using
– avoid confusion over source of

discrepancies
Automated test tools (more on Day 3)
Check for pathological effects

– examine variables that should be
unchanged

Swap modules to avoid self-tests
Re-use test cases
Remember the Prime Directive: seek to find
errors

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Higher-Order
Testing

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Higher-Order Testing

Beyond Module Testing
Integration Testing
Function Testing
System Testing
Acceptance Testing
Installation Testing
Test Planning and Control
Test Completion Criteria

Beyond Module Testing

Practical programs must represent real-world
needs
Programs must do what their users expect
and demand
SDLC: System Development Life Cycle

– requirements: why program is needed
– objectives: what and how well
– external specifications: representation of

program to its users
– how program is constructed

Beyond Module Testing

Software errors arise from miscommunication
JAD (Joint Application Development) and
RAD (Rapid Application Development)

– emphasize constant correction
– by constant communication with users

Specific testing phases emphasize
corrections to specific phases of SDLC

Integration Testing

Establish that interconnections among
modules function as required
Implicit in module testing as previously
discussed

Function Testing

Find discrepancies between program and
external specification
What the program does as a black box
User-eye view

System Testing

Definition
Facility Testing
Stress Testing
Volume Testing
Usability Testing
Security Testing
Performance Testing
Storage Testing
Configuration Testing
Compatibility / Conversion Testing

Installability Testing
Reliability Testing
Recovery Testing
Serviceability Testing
Documentation Testing
Procedure Testing

System Testing

Definition
Compare program to original objectives
Cannot base tests on external specifications

– are attempting to verify conformity
between what the ext specs represent and
actual behaviour of program

– therefore work with user documentation +
program objectives + program

Must have written, measurable objectives for
program

System Testing

Facility Testing
Refers to the documented features or
functions
Scan objectives sentence by sentence
Look for failure to comply
Can usually be done without computer

System Testing
Stress Testing

Show that program cannot handle sudden
increase in load, demand, input
Applies to programs that must have minimum
throughput or response time
Distinct from volume testing

– volume testing looks at total continuous
load to process

– stress testing looks at effects of sudden
imposition of load

E.g., if specs stipulate ability to handle up to
200 concurrent sessions, try suddenly going
from 50 users to 200

System Testing

Volume Testing
Show that system cannot handle maximum
required amounts of input
E.g., if program must be able to handle 200
Gb files, test with 200 Gb files and more
E.g., if specifications stipulate ability to
process 10,000 orders in a batch, test with
10,001 orders

System Testing

Usability Testing
Show that normal users will fail to accomplish
their documented goals using program
Clumsy design
Unsuitable language
Meaningless error messages
Inconsistencies in functions from screen to
screen
Inadequate checks on input
Useless options
Difficult data entry

System Testing

Security Testing
Try to violate rules of confidentiality, integrity
and availability
“Tiger Teams” specialize in attacking security
Be sure to obtain authorization for such
attacks!
Use known attacks as described in security
literature
CERT, CIAC Advisories
USENET postings
National Computer Security Association

System Testing

Performance Testing
Show that program is unable to meet
specified throughput or response-time
requirements
Example of failure:

– 10 second Service Level Agreement for all
transactions

– 43 minute response time
– absence of volume testing allowed poor

design to pass
Often combined with volume and stress
testing

System Testing

Storage Testing
Inability to meet requirements for working
correctly with specified storage

– cannot work with minimum RAM
– minimum required disk space exceeds

capacity
Incompatibilities with

– RAM management software
– virtual memory
– encryption software
– compression software

System Testing

Configuration Testing

Look for inability to function with specified
Hardware--RAM, ROM, CPU, peripherals
Software--operating system, TSRs, drivers
Program parameters--directories, max, min
users / files / records
Network operating systems

– versions
– parameters

System Testing

Compatibility/Conversion Testing
Failure of conversions from older systems
Inability to use existing data files
Conflicts with other legacy systems
Incompatibility with older operating systems
Inability to function on older hardware
Conflicts with older networks

System Testing

Installability Testing
Difficulties during installation of new product
Integration with operating systems
Special installation software

System Testing

Reliability Testing
Difficult to demonstrate long MTBF
Monitor rate of discovery of new errors
Use mathematical models to estimate
reliability

System Testing

Recovery Testing
Show that system cannot recover according
to specifications
Try deliberate “sabotage”
Measure MTTR
Look for permanent data damage

System Testing

Other types of tests
Serviceability Testing
Documentation Testing
Procedure Testing

Acceptance Testing

Performed by client organization
Conformity to contract
Includes installation testing

– methods of showing that installation failed
– check files, directories, code libraries,

databases

Test Planning and Control

Too many organizations act as if there will be
no errors found

– No resources for response
– Inadequate time allocated for repair

Need extensive planning
Regression testing

– Especially important
– Tests after every change or set of changes

Test Completion Criteria
Bad idea

– Stop when time runs out
– Stop when no more errors found

Better way
– Complete specific methodology
– But not possible for all phases
– Subjective
– Focusses on test method, not goal

Best approch
– Find specific number of errors...
– … and try for a few more when you find

those

Test Completion Criteria

How to know when enough errors found?
Statistical calculations
Mark-recapture of known errors
Parallel testing by independent teams

What if there are too few errors in reality?

Need judgement of test quality
Independent evaluation

Test Completion Criteria

Graph errors found per unit time
Continue searching if success rate high
Consider stopping when success rate falls

Er
ro

rs
 /

tim
e

Time

Independent Test Agency

Hire different organizations for development
and testing
Develop own separate department
Has worked well in practice

– high motivation in testing
– healthy competition
– development of specialized testing skills

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Types of Errors

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Checklists Useful

Text shows checklist p. 363 ff:
User I/F
Error handling
Boundary-related errors
Calculation errors
Initial and later states
Control-flow errors
Errors in handling or interpreting data
Race conditions
Load conditions
Hardware
Source, version and I/D control
Errors in the testing process

User I/F

Functionality
Communication
Command structure and entry
Program rigidity
Performance
Output

Error Handling

Error prevention
Error detection
Error recovery

Boundary-Related Errors

Numeric boundaries
Number and size of parameters
Confines of space
Time-limits
Loops
Memory and storage constraints
Load limitations
Hidden changes in algorithms

Calculation Errors

Logic errors
– wrong design or formula
– wrong breakdown into steps
– typos

Arithmetic errors
Precision problems

Initial and Later States

Initialization of variables
Loop-control variables
Pointers, flags, registers
Re-initialization
Global vs local variables
Pathological side-effects

Control-Flow Errors

Program goes haywire
Program stops
Program hangs
Conditions

Errors in Handling or
Interpreting Data

Parameter passing among routines
Overflows
Messaging system
Corruption of data

Race Conditions

Depending on expected completion sequence
Checking state before action but without
locking
Deadly embrace

Load Conditions

Resource unavailable
Resources not returned
Demands contiguous memory
Input buffer / queue too small
Fails to clear buffer
Abbreviation of output
Defining priorities

Hardware
Failing to recognize HW failures
Destination of output
Device unavailable
Returning to wrong pool
Device forbidden
Noisy or failed channel
Time-outs
Failing to close files
EOF
Misunderstood error codes
Underusing device intelligence
Initialization

Source, Version and I/D
Control

Inconsistent version numbers
Old bugs reappear
Incomplete update of repeated code
Missing title at startup
Missing or wrong version ID
Missing or bad copyright message
Source fails to compile exactly to production
code
Distribution media bad, incorrect or
virus-infected

Errors of the Test Process

Missing bugs
Finding non-existent “bugs”
Poor reporting
Poor follow-up

Homework
Read Chapters 3, 4 & Appendix from your
textbook
Answer all the review questions distributed
by the instructor

– Avoid copying the textbook blindly -- you
will not remember as much as if you think
about the answers yourself

– Use simple language; usually a few words
or sentences will be ample

Submit your work by 09:00 tomorrow
morning.
Because of the short time available, do not be
late in submitting your review answers

SOFTWARE QUALITY
ASSURANCE

John Abbott College JPC

Test-Case
Design

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Test-Case Design

Design Philosophy
Equivalence class analysis
Boundary analysis
Testing state transitions
Testing race conditions and other time
dependencies
Function-equivalence testing
Regression testing
Error-guessing

Test-Case Design Philosophy

Complete testing is impossible
Therefore define subset of test cases likely to
detect most (or at least many) errors
Intuitive approach is “random-input testing”

– sit at terminal
– invent test data at random
– see what happens
– worst possible approach

Equivalence Partitioning

“A group of tests forms an equivalence class
if you believe that:

– They all test the same thing.
– If one test catches a bug, the others

probably will, too.
– If one test doesn’t catch a bug, the others

probably won’t either.”
-- p. 126

Subjective process
Goal is to reduce many redundant tests to a
smaller number giving same information
Focus especially on invalid inputs

Equivalence Partitioning

Must first identify the equivalence classes
Range: below, within, above
Number: fewer, valid, higher
Set: all members & 1 non-member
Requirement (set of 1): valid & invalid
On doubt, split class

Equivalence Partitioning

Then define specific test cases
At least one test case for every valid
equivalence class
At least one test case for every invalid
equivalence class
See Figure 7.1, p. 127 in text

Boundary-Value Analysis

Cases at boundaries have high value for
testing
Select cases just below, at and just above
limits of each equivalency class
Some testers include mid-range value as well
just for additional power of test

Testing State Transitions

Every change in output is a state transition
Test every option in every menu
If possible, test every pathway to every option
in every menu
Interactions among paths

– draw menu maps
– identify multiple ways of reaching every

state
– keep careful records of what you test (can

get confusing)

Testing Race Conditions and
Other Time Dependencies

Check different speeds of input
Try to disrupt state transitions (e.g, press
keys while program switches menus)
Challenge program just before and just after
time-out periods
Apply heavy load to cause failures (not just
poor performance)

Function-Equivalence
Testing

Use a program that produces known-good
output
Feed same inputs to both the standard
program and the program under test
Compare the outputs
Automated testing techniques can help

– for numerical and alphanumerical output
– for real-time process-control applications

Regression Testing

Did the bug get fixed?
– Some programmers patch symptom
– Few test effectively

Check that you can produce bug at will in bad
version of code
Use same tests on revised code

– Stop if bug reappears
– Push the testing if bug seems to have been

fixed

Error Guessing

Need intuitive grasp of what is likely to go
wrong in a program
Look at typically difficult cases (e.g., wrong
number of parameters)
Examine cases that are not explicitly defined
in specifications (assumptions by
programmer)

SOFTWARE QUALITY
ASSURANCE

John Abbott College

Automated
Testing

M. E. Kabay, PhD, CISSP
Director of Education, NCSA

President, JINBU Corp

Copyright © 1997 JINBU Corp. All rights reserved

Why do programs have bugs?

Involvement makes us blind
Expectations mask reality
Interactions are unpredictable
Testing takes too much time
Testing is repetitive and tedious

The Cost of Software Quality

At least 60% of your development budget
is used to test only 20-25%
of your application features

Quality Assurance Depends
on Testing

Critical examination
Doing everything feasible to find errors
Errors are deviations from specification

To Achieve Software Quality

We must conduct
a critical

examination of a
system's quality

every time we
implement a change

The System Development
Life Cycle (SDLC)
Define Requirements

 Design Specifications

Code Software

Fix Defects

Why QA?

Errors in mission-critical systems can be
real-world and business disasters
E.g., software error in chemical-plant in
Netherlands

– allowed operator to enter codes for wrong
chemical substances

– exploded on contact in vat
– destroyed plant
– killed two people

Why automated testing?

SDLC known as "waterfall"
Software backlog running 2 years and more
JAD/RAD more popular than ever
Therefore user I/F changes constantly

Current Testing Methods are
Inadequate

Manual input
Unstructured
Slow
Depend on testers' awareness and attention
Leave no audit trail
Poor or no statistics
Manual demonstration of errors

Consequences of Manual
Testing Methods

Quality is not emphasized during SDLC
Time pressures always squeeze testing
Testing never catches all the bugs

Automated Testing

Capture/Playback
– record macros showing mouse

mouvements and alphanumeric input
– typically no editing language

Structured Automated Testing
– tool creates structured, editable script
– can use databases as source of input
– intelligent handling of errors

Limitations of
Capture/Playback

Merely automate manual procedures
Difficult to maintain as application changes
Cannot build regression database
Must wait until application is ready
No mechanism for detecting errors
No mechanism for reporting results

Good Applications Are Easily
Maintained and Enhanced

Structured development
System documentation
Metric: ease of reliably changing application
QA must learn from general programming
experience

Structured Testing

Modular design
Documentation
Segregation of data from procedures
Re-usability

Structured Automated
Testing

Define test plan
Document logic
Generate test procedures
Apply test procedures
Evaluate results

Benefits of Structured
Automated Testing

Consistent, reproducible testing
Increased test coverage
Easier maintenance
Fully documented testing
Higher-quality software

Case Study:
COGNOS / Ottawa

15 days for testing
6 people @ $300/day
3 test phases per product release
3000 manual tests per phase
12.5% test coverage
$81,000 per release @ 12.5%
$648,000 per release @ 100%

Case Study:
COGNOS / Ottawa

"Our goal was to improve the level of testing
while at the same time reducing the time and
manpower for each release."

– Doug Clement, COGNOS

AutoTester at COGNOS

5 days elapsed time
6 people
3 test phases
24,000 tests/phase
$27,000/phase using AutoTester

Case Study:
HRL CANADA / Ottawa

Jacques Joanisse, manager
Built regression database
80% of the application features were tested
Redeployed 60-80% of test group back into
development

Case Study:
New York Life / Toronto

Business case showed that up-front cost of
implementing automated QA process will be
repaid in the first year
Cost-reduction: lower staffing, shorter cycle
Cost-avoidance: identifying more errors

Sample ROI

Take $1,000,000 SW development budget
Manual testing costs 60% = $600,000
Manual testing: ~20% of application features
Automated testing: test 90-95% of features
Automated testing costs 24% = $260,000
Real savings: $300,000 including cost of
testing tool

Structured Automated
Testing

Emulates trained human operator
Single tool for multiple platforms
Supports corporate standards
Simplifies training and support

PC-based S.A.T. are Platform
Independent

Works on PCs
Can test PC programs
Can test link to hosts using emulators
Handles online, real-time systems
Can deal with batch and hard-copy report
systems by examining results on screen
Has been used for ATMs, POS, telephone
switches

AutoTester Plus Components

Script Station
– Uses screen image and screen definitions
– Fully generate all scripts for application

tests
Test Station

– Menu-driven application
– Uses generated scripts to guide users
– Users create, manage and execute test

cases
– Apply meaningful and comprehensive tests

Solution to the Software
Quality Gap

Structured development is key to effective
maintenance
Tie test cases to application specs
Don’t write programs to test
 application
Test-procedures stored in database

Independent Analysis
Gartner Group:

"AutoTester from AutoTester, Inc. of Dallas
reduces testing effort and improves the
quality of resulting systems."
"AutoTester can effectively provide a facility
for regression testing most interactive
applications at a fraction of the cost and
effort required to do so manually."

Independent Analysis

Software Quality Engineering:
"AutoTester is unique because it can test
both PC-based applications as well as
applications which run on mini or mainframe
computers.
Variable files support in AutoTester allows
test cases to be imported from external PC or
remote sources, and permits single scripts to
exercise unlimited permutations, thus
conserving script development and
maintenance effort."

Automated Testing is
Suitable for Many Types of
Quality Assurance Tests

Unit tests
Integration tests
Regression tests
Stress tests

Testing Spans the
Organization

Way of working
Not gimmick
Permeates development team
Management support required
Involves users
Plan for pilot project before choosing tool

Demonstration Disks

Load the demo disk onto a workstation
Follow the instructions to proceede through
the demonstration.

Homework
Readings: Chapters 7, 11, and 13 from your
textbook
Answer all the review questions distributed
by the instructor

– Avoid copying the textbook blindly -- you
will not remember as much as if you think
about the answers yourself

– Use simple language; usually a few words
or sentences will be ample

Submit your work by 09:00 tomorrow
morning.
Because of the short time available, do not be
late in submitting your review answer

