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8 Hypothesis Testing 

8.1 Introduction 

The Ionian GBCE™ confidence limits for the standard deviation in §7.24 came very close to asking whether 
the sample standard deviation could have come from a population whose parametric standard deviation was 
greater than 2. Hypothesis testing in statistics is usually in the form of the question, “Could the results we 
observe in our sample have occurred by chance variation in sampling alone if one or more parameters had 
specific values?” The hypothesis that defines the baseline against which the sample is evaluated is called the 
null hypothesis (H0 or H0 in most textbooks) and the particular hypothesis that will be accepted if we reject the 
null hypothesis is called the alternative hypothesis (most commonly H1, H1 or Ha).88 

Typically, the question of interest will be represented by the alternative hypothesis. As illustrated in the 
following examples, note how consistently what is interesting to the analyst is the alternative hypothesis in the 
following examples of some questions we might encounter and the corresponding statistical hypotheses that 
might be framed: 

• An accountant doing an audit is becoming suspicious of the figures shown in the books of a big 
company called Unron; she extracts the data from several hundred transactions and wants to know if 
the frequencies of the ten digits (0, 1,…9) in the last portions of the entries are equal (radical 
deviation from equality would suggest that the numbers were fraudulently invented, since people 
aren’t very good at making up numbers that fit the uniform probability distribution). 

o H0: the frequencies are all 0.1; 

o H1: the frequencies are not all 0.1. 

• A stock broker has become interested in the performance of the shares for Macrohard Corporation; 
he wants to know if the data for the last three years support the view that the growth rate is at least 
6% per year. If it is, he will recommend to a client interested in long-term investments that the 
investment fits the client’s profile. 

o H0: the regression coefficient is less than 6% per year. 

o H1: the regression coefficient of stock price versus year is 6% per year or more; 

• A network management team needs to know if a new heuristic compression algorithm is working 
better than the old Lempel-Zev-Welch (LZW) algorithms that have been in use for decades. They 
measure the compressed file sizes for a wide range of files using both types of algorithms and 
compare the results. 

o H0: there is no difference between the compression ratios of the LZW compression methods 
and the new heuristic algorithms OR the heuristic algorithms are not as good as the LZW 
methods. 

o H1: the heuristic algorithms are better than the LZW algorithms. 

  

 

88 This text uses H0 and H1 to avoid constantly having to typeset subscripts, especially in Excel, where subscripts are a real pain to create. In exercises, 
students are exposed to both H1 and Ha for practice. 
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• A manufacturer of trans-temporal frammigers is investigating the effects of besnofring modulation 
on the accuracy of the time-tuning mechanism. The investigators apply seven different levels of 
besnofring modulation to the frammigers while transporting samples to ten different time locations 
each. They analyze the 70 measurements to see if there are any effects of the besnofring modulation. 

o H0: there are no effects of differences in besnofring modulation level on the accuracy of time-
tuning. 

o H1: there are differences in accuracy of time-tuning among the groups exposed to different 
levels of besnofring modulation. 

• A marketing firm has three different variations on an advertising campaign. They are trying them out 
in six different regions of the target market by counting the number of answers to questions using a 
Likert scale (1: strongly disagree, 2: disagree… 5: strongly agree).  

o Are there differences among the ad versions in the way people respond in the six regions 
overall? 

▪ H0: there are no main (overall) effects of ad versions on responses; 

▪ H1: there are main effects of ad versions on responses. 

o Are there differences among the regions of the market in the way people respond? 

▪ H0: there are no main effects of region on responses; 

▪ H1: there are main effects of region on responses. 

o Are there any regional variations in the way people respond to the different campaigns 

▪ H0: there are no interactions between the ad variations and the regions of the market 
in the way people respond; 

▪ H1: there are interactions between the ad variations and the regions of the market. 

• An investor is looking at two different manufacturers of trans-temporal frammigers as potential 
investments. One of the steps in due diligence is to examine the reliability of quality control of the 
two factories’ production lines by comparing the variances of the products. 

o H0: there is no difference in the variances of the two production lines; 

o H1: there is a difference in the variances of the two production lines. 

• A system manager needs to know if a particular department’s growth rate in disk space utilization is 
really faster than all the other departments’ growth rates. 

o H0: the regression coefficient of disk space over time for the suspect department is not 
different from the other departments’ regression coefficients or it is slower. 

o H1: the regression coefficient of disk space over time for the suspect department is greater 
than the other departments’ regression coefficients. 

In general, the null hypothesis, H0, is the one that posits no effect, no difference, no relationship, or a default 
state. H1, the alternative hypothesis, is the one that posits an effect, a difference, a relationship, or deviation 
from a ho-hum uninteresting state. There is nothing absolute or inevitable about the framing of H0 and H1: 
the decisions depend on the interests of the investigator.  
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8.2 Are the Variances of these Two Samples the Same? 

Although most statistics textbooks start with comparisons of the means, it will be very useful for you to know 
about testing variances – the test is used in analysis of variance (ANOVA), which is a central technique in 
applied statistics. Here we begin the study of hypothesis testing by looking at variances. 

Statisticians have determined that when we repeatedly take two samples from the same population and 
compare their variances, the ratio, called an F-statistic, follows a distribution called the F-distribution with  

1 = n1-1 and  2 = n2-1 degrees of freedom. The degrees-of-freedom parameters apply to 
the numerator and the denominator of the ratio.  

For the ratio of two sample variances, s2
1 and s2

2 computed the usual way from samples of size n1 and n2, we 
compute 

 

 

 

 

This F-ratio follows the F distribution with 1 and 2 degrees of freedom.  

Each combination of degrees of freedom has a different shape, as shown in Figure 8-1, which graphs 
cumulative probability functions for four combinations of n1 and n2 degrees of freedom. 

The F-test for the equality of two sample variances (or of any other quantity that follows the same rules as 
variances) consists of computing the ratio the sample variances and determining how often such a large value 
of F or larger would occur by chance alone (i.e., through random sampling) if both samples actually came 
from the same population or from two populations with identical parametric variances. 

  

Figure 8-1. Cumulative probability functions for various F distributions. 
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By convention, we create the F-ratio by dividing the larger sample variance by the smaller sample variance so 
that F will be 1 or larger, allowing us to use F.DIST.RT (=FDIST in earlier versions) to compute the right-
hand tail of the F- distribution for the appropriate pair of degrees of freedom. The EXCEL function 
=F.DIST.RT(F, n1, n2) provides the probability that the value F (and any values larger than the one 
observed) of the F-ratio would occur by chance if the samples came from the same population or if they 
came from two populations with identical parametric variances. The F-distribution functions are shown in the 
composite image in Figure 8-2.  

For example, =F.DIST.RT(2.5,10,100) = 0.010; thus the probability of obtaining an F-ratio of 2.5 or larger 
by chance alone when the degrees of freedom of the numerator and denominator are 10 and 100, 
respectively, is 0.010.  

If for some reason you are given an F-ratio that is smaller than 1, you can use the =F.DIST function to 
calculate the left-tail probability. For example, if the F-ratio were inverted, giving =F.DIST(0.4,100,10,1),89 
the result would be 0.010, as it should be.  

There are three possible sets of hypotheses that you might want to test with an F-test: 

• H0: σ2
1 = σ2

2  and  H1: σ2
1  σ2

2 

• H0: σ2
1  σ2

2  and  H1: σ21 > σ2
2 

• H0: σ2
1  σ2

2  and  H1: σ21 < σ2
2 

Suppose we are interested in the political commitment of two different groups of voters in the Martian 
general elections, the Mars First Coalition secessionists and the Earth Forever Patriots irredentists. One 
measure of their commitment is the variability of their responses to ideological statements reflecting each 
movement’s core values. A University of Schiaparelli political science group develops test instruments and 
applies them to 1,228 Mars Firsters (secessionists) and to 1,175 Earth Forever (irridentists) members. Their 
results show that the variance of the overall scores are 38.2 for the secessionists and 35.0 for the irredentists. 
Are there grounds for believing that the two groups have a difference between their parametric variances? 

Calculate the F-ratio that is greater than 1:  

F[1227,1174] = 38.2/35.0 = 1.091429 

Then 

P{ F[1227,1174]  1.091429 | σ2
1 = σ2

2 } = F.DIST.RT(1.091429, 1227, 1174) = 0.06504 

We can read the line above as “The probability of obtaining an F-ratio of 1.091429 or larger by chance alone 
using these sample sizes if the two population variances were equal is 0.0650.”90 

 

89 For unknown reasons, Microsoft decided to include the cumulative parameter (1=cumulative, 0=density) in the =F.DIST function but not in the the 
=F.DIST.RT function.  
90 P{ a | b} is called a conditional probability and is interpreted as “The probability of observing a given that b is true.” 

Figure 8-2. Excel 2010 F-distribution functions. 
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8.3 Levels of Statistical Significance and Type I Error: Rejecting the 
Null Hypothesis When it is Actually True 

At this point, a reasonable question is “So what if the probability of the F-ratio is 0.0650? What does that 
mean to us? Are the parametric variances different or aren’t they?” 

A conventional answer points to four agreed-upon levels of statistical significance in hypothesis testing. We 
conventionally refer to the probability of obtaining the observed results by chance alone if the null hypothesis 
is true as P{H0} and even more often simply as p. We also call p the probability of Type I Error.  

Type I Error is rejecting the null hypothesis when it is actually true. 
We agree by convention that 

• If p > 0.05  

o We accept H0,  

o Reject H1, and  

o Say that the results are not statistically significant and  

o Follow the P{H0} (or p) with the letters ns to show non-significance; e.g., “The probability 
of encountering such a large statistic or larger if the parametric variances were the same is 
0.0650, which is not statistically significant at the 0.05 level of significance. We therefore 
accept the null hypothesis of equal variances for these two samples. 

• If 0.01 < p  0.05  

o We reject H0,  

o Accept H1, and  

o Say that the results are statistically significant or statistically significant at the 0.05 level.  

o The P{H0} (or p) is typically marked with one asterisk (*) to show this level of significance; 
e.g., P{H0} = 0.0472* 

o The most explicit formulation of the results is something like this: “The test statistic of 34.98 
has a probability of 0.0472* of occuring by chance alone even if the samples had the same 
parametric value of this statistic. The results are statistically significant at the 0.05 level of 
significance and we reject the null hypothesis of equality of the parametric statistics.”  

o In practice, we would be more likely to write briefly, “The parametric statistics for these 
samples are significantly different at the 0.05 level of significance (p = 0.0472*).” 

• If 0.001 < p  0.01  

o we reject H0,  

o accept H1, and  

o Say that the results are statistically highly significant or statistically significant at the 0.01 
level.  

o The P{H0} is typically marked with two asterisks (**) to show this level of significance; e.g., 
P{H0} = 0.00472**. 

o The verbose formulation could be, ““The test statistic of 87.02 has a probability of 
0.00472** of occuring by chance alone even if the samples had the same parametric value of 
this statistic. The results are statistically significant at the 0.01 level of significance and we 
reject the null hypothesis of equality of the parametric statistics.”  

o In practice, we would probably write something like, “The parametric statistics for these 
samples are highly significantly different at the 0.01 level of significance (p = 0.00472**).” 
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• If p  0.001  

o We reject H0,  

o Accept H1, and  

o Say that the results are statistically extremely significant or statistically significant at the 0.001 
level.  

o The P{H0} is typically marked with three asterisks (***) to show this level of significance; 
e.g., P{H0} = 0.000472***. 

o The verbose formulation could be, “The test statistic of 109.53 has a probability of 
0.000472** of occuring by chance alone even if the samples had the same parametric value 
of this statistic. The results are statistically significant at the 0.001 level of significance and we 
reject the null hypothesis of equality of the parametric statistics.”  

o In practice, we would probably write something like, “The parametric statistics for these 
samples are extremely significantly different at the 0.001 level of significance (p = 
0.000472***).” 

So going back to the study of Martian colony politics, are the two political movements similar or different in 
their variability on their ideological position? 

The way a statistician would normally respond to the test results would be to say that the results of the study 
were not statistically significant, since the probability of rejecting the equality of variances even though they 
might be the same was about 6%, above the normal cutoff point of 5% for statistical significance. However, 
taking into account the size of the samples (respectable) and the closeness of the p-value to the limit for 
significance, a statistician would also add that the results are highly suggestive even though not statistically 
significant and that the problem could bear further study. 

The issue of whether experiments or studies are repeated if the initial results don’t fit preconceptions or 
preferences is a, you should pardon the term, significant problem in statistics. Even without a theoretical 
analysis, it must be clear that repeating studies until one gets the result that’s desired – and ignoring the 
contrary results of the earlier studies – is surely going to bias the results towards the preconceived goal. A 
reasonable approach must repeat experiments if they are close to a minimum regardless of whether they are 
on one side or another. Thus a good experimental protocol might include “The experiment will be repeated if 
the p-value is from 0.02 through 0.08.” What won’t work is “The experiment will be repeated if the p-value is 
from 0.05 through 0.08.”  

Here’s another example of a test of variances, this time drawn from computer science. 

A musician working with machine intelligence has created a computer program that analyzes samples of 
music from specific composers – sometimes thousands of compositions – and creates complex algorithms 
reflecting the composers’ patterns, including the degree of spontaneity and originality, in their music. Using 
these algorithms, the program interacts with its operator to construct new music that can be in the style of the 
original composer or that can be wholly original. The musician is studying listeners’ response to the music 
and is interested in knowing if the range of responses is different when they listen to the original composers’ 
music compared with the range of responses when they listen to the synthesized music. Thus  

H0: σ2
1 = σ2

2 and H1: σ2
1  σ2

2 

The researcher collects data on 40 people’s responses and finds that the F-ratio of the variance of the 
responses to the original music compared to the variance of the responses to the synthesized music is 1.83 
with 39 and 39 degrees of freedom and P{H0} = 0.0314*. We can say “There is a statistically significant 
greater variance of the responses to the original music compared with the variance of the responses to the 
synthesized music (p = 0.0314*)”.  

As we have seen, we often encounter assertions of the form, “If the null hypothesis is true, the chance of 
observing this statistical result or one even more extreme is 0.042*, which is statistically significant at the 0.05 
level of significance.” 
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But what if we are unlucky? What is the probability of observing the results we obtained if the null hypothesis 
is actually true but we have stumbled into the improbable case? We simply assert that if the probability that 
the null hypothesis is p, then the risk of rejecting the null hypothesis when it is true is simply p. So in the 
example above, the probability p of encountering the observed results if H0 is true is 0.042 and the 
probability that we will be wrong in accepting the null hypothesis is exactly that: 0.042. 

8.4 Type II Error: Accepting the Null Hypothesis when it is Actually 
False. 

In general, if we choose the α level of signficance, we have to understand that we will be wrong on average in α 
of the statistical decisions we make that accept the null hypothesis. Thus if we choose α = 0.01, there is a 1% 
chance that we will encounter the deviant results that will trick us into rejecting the null hypothesis when it is 
true. 

It follows that if we increase the severity of our test criterion – e.g., if we use α = 0.001 as our limit for 
rejecting the null hypothesis, there is an increasing risk that we will accept the null hypothesis when it is actually 
false. We call this kind of error Type II Error. 

The calculation of the probability of Type II Error (sometimes symbolized β) is complicated because it’s 
impossible to calculate theoretical probabilities of the observed values without specifying an explicit value for 
the null hypothesis. If H0 assumes equality of means, there is an infinite number of versions of H0 in which 
the means differ. 

Statisticians have developed methods for estimating the probability of Type II Error, but the topic is suitable 
for a more advanced course than this introduction. 

It is enough for the time being for students to be aware that there is always a possibility of being wrong in our 
decisions under uncertainty.  

 

8.5 Testing a Sample Variance Against a Parametric Value 

It is possible that you may have to test the variance of a specific sample, s2, against a known or assumed 
parametric value, σ2. You may recall the example in §7.24, where we developed a confidence interval for the 
parametric variance based on a sample statistic: the situation involved production of 100 gram bottles of a 
beetle-carapace extract at an Erewham plant, where the rules were to start investigating the production line if 
the standard deviation of the sample exceeded a parametric limit of 2 grams. One approach was to compute 
confidence limits; now you can see that another approach is to test the hypothesis that the parametric 
standard deviation of the population from which a a sample has been extracted is equal to 2 grams or less. If 
so, no problem; if not, problem! Exceeding the maximum allowable variance could lead to throwing the 
entire production into the compost bin. 

We have to convert our standard deviations into variances to be able to calculate the test value. So s2 = 0.82 = 
0.64 and σ2 = 22 = 4 and the null and alternative hypotheses in this case would be 

H0: σ2  4  and  H1: σ2 >4. 

Figure 8-3. Type I and Type II Errors. 
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In §7.24, you were told that the quantity 

x = (n – 1)s2/σ2 

follows a chi-square distribution with df = (n – 1) degrees of freedom. This quantity thus becomes the basis 
of a hypothesis test for sample variances compared to parametric variances. 

We compute the quantity x and compare it to the 2
[n-1] distribution to determine the likelihood that the x 

value (or a value even more unexpected – i.e., larger) could have occurred by random sampling alone if the 
sample really came from a population with the defined parametric variance σ2 = 4. 

Let’s continue with our beetle carapace example and look at the results of the sample discussed in §7.24,. The 
quality-assurance test took 25 bottles of the hugely popular Grandiloquent Beetle Carapace Extract (GBCE™) 
from Vega II on a particular day in 2281and found the sample standard deviation to be 0.8 gm. Summarizing 
the situation, we have 

n = 25  s = 0.8 and so s2 = 0.64  σ = 2 and so σ2 = 4 

Therefore 

x = (n – 1)s2 / σ2 = 24*0.64/4 = 3.840 

and this quantity is distributed as the 2
[24] distribution if the data are the result of random sampling from a 

population (production line) with a parametric variance of 4 (parametric standard deviation of 2). 

Using the CHISQ.DIST.RT function in EXCEL 2010,  

P{H0} = CHISQ.DIST.RT(3.94,24) =0.9999988302 ≈ 1 

in other words, it is almost certain that this sample could have been drawn from a population (the production 
for that day) with a parametric variance of 4 (i.e., a parametric standard deviation of 2). Therefore, we accept 

the null hypothesis: σ2  4. Production of beetle carapace extract can continue without risk of conversion of 
the product to compost (what a relief)! 

Just for practice, what if the sample standard deviation s had actually been 3.0 instead of 0.8? Then s2 = 9 and  

x = (n – 1)s2 / σ2 = 24*9/4 = 54 and 

P{H0} = CHISQ.DIST.RT(54, 24) = 0.000426*** 

Technically, we would write that “The probability that we could obtain a sample with standard deviation of 3 
or more if the parametric standard deviation were 2 or less is only 0.0004*** which is extremely statistically 
significant at the 0.001 level of significance.”  
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8.6 Are the Means of These Two Populations the Same? 

In every field of investigation, people need to know if the results of their measurements in two different 
samples could have come from the same population . Are these samples from the same population and 
therefore different due to random sampling alone? Or are they from two different populations whose 
parametric means differ? One of the most powerful tools in applied statistics is the analysis of variance, or 
ANOVA, which builds on what we have learned about testing the equality of sample variances. Another 
widely-used tool is the t-test of the equality of two statistics that follow a Normal distribution. 

8.7 ANOVA for Comparing Means of Two Samples 

Imagine that we have two samples of size 30 that we know are actually drawn from the same population of 
measurements of a production line of 10” radius tires for very small environmentally-clean cars powered by pet 
rabbits. We need to find out if the means of the two samples reflect differences in the parametric means of 
the populations sampled  or if we can accept that the means as equal (H0). 

The mean radius and variance for each sample are as follows (the unusual precision is provided so readers can 
do their own computations): 

Before we can use ANOVA to test the significance of the observed difference between the means, we should 
satisfy ourselves that one of the key assumptions of ANOVA is satisfied: the parametric variances of the 
samples must not differ. Using our usual notation, we must test  

H0: σ2
1 = σ2

2 and H1: σ2
1  σ2

2 

We know, as godlike beings, that there are really no differences in the parametric statistics of these two 
samples. They are just samples from the same population. The statisticians working with the data, however, 
don’t know this: they have to manage with probability calculations. 

Noticing that the variance for the second sample is bigger than that of the first sample, we compute the F-test 
for equality of the parametric variances of the populations from which these samples are drawn as 

F[29,29] = s2
2/s2

1 to generate a value > 1 for the test.  

F[29,29] = 0.08771458/0.08067098 = 1.087  

How likely is it that we could observe an F-ratio that large or larger if it were true that H0: σ2
1 = σ2

2? 

We compute  

= F.DIST.RT(1.087, 29, 29) = 0.412ns 

and thus conclude that there is no reason to reject H0: σ2
1 = σ2

2. We may proceed with the test of the means. 

  

Figure 8-4. Mean and variance of two samples. 
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Now suppose we combine the two samples into one big sample with n = 60 and compute the mean and the 
variance of the pooled sample where the means are the same? Without going into details, the results would be 
as follows: 

Mean radius (pooled): 10.01162592 and Variance of radius (pooled): 0.083121563 

There is nothing surprising about this: after all, from our godlike perspective as creators of the example, we 
know perfectly well that the samples really are from the same population. Pooling the samples would be the 
same as simply taking a random sample of size 60 instead of two samples of size 30. The mean of the pooled 
data isn’t much different from the two-sample means and the variance is pretty much like the separate 
variances. 

But what if we alter the thought-experiment and imagine that the second sample actually comes from a 
different production line: one making 17” radius tires (7” bigger than the tiny 10” radius tires) for gas-
guzzling monsters with macho supercharged engines and, ah, virile mag wheels? What would happen to the 
statistics we just computed? 

Adding 7” to the existing Sample 2 to create a synthetic Sample 3 for our thought experiment produces the 
following results: 

 

The mean of Sample 3 in Figure 8-5 is exactly 7” larger because we deliberately added 7” to every one of the 
observations we already had for Sample 2; it’s no surprise that the mean increased by exactly 7”. What may 
surprise you is that the variance of Sample 3 is exactly the same as the variance of Sample 2, but if you think 
about it, variance is computed as a function of the average deviations of the values in a set from their mean, 
so there was no increase in variability of the data after the artificial shift in the mean. We just shifted all the 
Sample 2 data up by 7”; we didn’t increase the spread of the data at all in the new Sample 3. 

Without doing a computation, we can say intuitively that the average variance within the groups is the same regardless 
of the difference in the means of the two groups. We won’t delve too deeply just now into how to compute the 
average variance within the groups – that’s coming in a few paragraphs. 

But for now we compute the overall variance of the pooled data including Sample 1 and Sample 3: the mean is 
13.51162592 and the variance is 12.67389725. The variance of the pooled data when the three samples have 
different means is bigger (~13.5) than when the two samples have the same mean (~0.08).  

 

  

Figure 8-5. Sample statistics for tires including new Sample 3 
modified by adding 7 to every value in Sample 2. 
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It turns out that the one-way analysis of variance (ANOVA) is based on something very similar to this kind 
of reasoning. After activating the Data | Data Analysis tools menu, we can use the function Anova: Single 

Factor (Figure 8-6).  

The concept of single factor refers to the classification of groups according to only one criterion; e.g., sample 
number or team or company or whatever we are interested in defining as our groups of interest. 

Figure 8-7 shows the menu for entering the locations of the input data and the output in EXCEL 2010. 

 

 

Later, you’ll study two-factor ANOVAs that classify groups by two criteria (factors) such as gender and 
geographical location, or company and size, or weight and height, or team and year…. 

  

Figure 8-6. Choosing the ANOVA for testing differences of means classified by 
a single factor. 

Figure 8-7. Menu for ANOVA single factor in Excel 2010. 
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Figure 8-8 shows the output for our example, starting with Samples 1 and 2 that were similar in their means: 

Looking at Figure 8-8, you can see that the F-test in this case is the ratio of two variance-like measures of 
variability (called the Mean Squares and abbreviated MS). 

• The Between Groups MS  

o Is a function of the differences in the means of the two (or more in general) samples,  

o Is in the row labeled Between Groups in the column mark.ed Source of Variation)  

o Is often printed as MSgroups in discussions of the results. 

• The Within Groups MS 

o Is based on the average variations inside both samples  

o Is often written MSwithin  

o Is often called MSerror. 

The null and alternate hypotheses here are expressible in three ways that imply the same thing: 

• H0: μ1 = μ2  H1: μ1   μ2  

• H0: MSgroups  = MSwithin   H1: MSgroups   MSwithin 

• H0: F ≤ 1 H0: F > 1 

As you can see in , the F-ratio of 0.24931991 is not statistically significant; there is no reason to reject the null 
hypothesis that the means of samples 1 and 2 are the same. The p-value of ~0.6 means that the chances of 
getting an F-ratio that large or larger with 1 and 58 degrees of freedom if the null hypothesis were true is 
about 3 out of 5 sampling experiments. 

To check the calculation of F (just to help make sense of it), one can calculate =F.DIST.RT(0.249319,1,58) 
which sure enough gives 0.61944 just as the ANOVA table in Figure 8-8 shows. 

 

91 Usually three significant figures are enough when publishing an F-test ratio, so we would normally adjust the number of decimal places to show 
0.249. 

Figure 8-8. ANOVA for tire data – samples 1 & 2 (means not different). 
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Now let’s look at the ANOVA for Samples 1 and 3: 

Because we deliberately changed the mean of Sample 3 in this illustrative example,92 the MSgroups  is huge: 
>742! However, because of the artificial nature of the modification, the MSwithin  is exactly the same as in Figure 
8-8 comparing samples 1 and 2. The F-ratio (MSgroups / MSwithin ) is now enormous (>8823 ). 

There is no reasonable doubt that we can reject the null hypothesis of equality of the means of samples 1 and 3 
in this contrived example: the chances of getting such as large F-ratio (>8823) with 1 and 58 degrees of 
freedom are negligibly small (4.5E-65). The result is thus described as extremely statistically significant. 

So let’s recapitulate what you’ve seen in this section. 

• ANOVA is based on the concept that if everything is the same in samples, a form of variance for 
individual samples versus the variance of the entire set of data should be similar. 

• ANOVA depends strongly on the assumption that all samples being compared have the same 
fundamental (parametric) variance. We call this the assumption of homoscedasticity.93  

 

  

 

92 We added 7 to every value. 
93 Sokal & Rohlf write, “Synonyms for this condition are homogeneity of variances or homoscedasticity, a jawbreaker that makes students in any biometry 
class sit up and take notice. The term is coined from Greek roots meaning ‘equal scatter.’” (Sokal and Rohlf, Biometry: The Principles and Practice of 
Statistics in Biological Research 2012) p. 414. 

Figure 8-9. ANOVA for tire data – samples 1 & 3 (different means created in demo data set). 
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8.8 The Model for Single-Factor ANOVA 

The underlying model for this ANOVA can be written as follows: 

Yij = Y + i + ij 
where Yij is the jth observation in group i of the comparison; 

Y is the overall (global) mean of all the observations; 

i is the average main effect of being in group i (i.e., Yi – Y); 

ij is the residual variation for the jth observation in group i (i.e., Yij - Yi). 

SS in the ANOVA table stands for Sum of Squares and, as you have seen already, df stands for degrees of freedom. 
A Mean Square (MS) is SS/df. The MSG is the Mean Square Among (or Between) the  Groups ; for a groups, MSG has 
dfG = a – 1 degrees of freedom. MSG = SSG / dfG. Similarly, MSW is the Mean Square Within Groups (also 
known as the Mean Square Error, the Residual Mean Square Error, and the Unexplained Mean Square Error 
abbreviated MSE) and has dfW = Σn – a where Σn is the sum of all the sample sizes of all the groups. The MSW 
is a measure of the intrinsic variability of the system being studied; it is the variability left over after we have 

explained the variations in means among the groups caused by the main effects i. 

The F-test for the presence of the main effects is 

 

ANOVA is an immensely powerful tool that is extensible to many different situations. One of the simplest 
extensions of what you have already learned is to test for the presence of differences of the means of more 
than two samples at a time; however, the models can become much more sophisticated than the simple one-
factor ANOVA introduced in this section. For example, 

• We can compare measurements in the same samples with various treatments; for example, it is possible 
to use the paired-comparisons ANOVA to see if a measurement for each specific subject before 
administration of a medication is the same as the measurement for that subject after treatment. Such 
a comparison naturally reduces the MSwithin and increases what we call the power of the test. 

• It is possible to look at the effects of two different factors at the same time (two-way ANOVA) and 
even of many factors at once (multifactorial ANOVA). For example, we could study the effects of 
two different doping agents on the performance of integrated circuitry. In addition to telling if the 
different doping agents individually change performance, the two-way ANOVA would also reveal if 
the effect of one factor was different as a function of the other factor. We call such dependencies 
interactions 

• ANOVA with linear regression uses a model where an element of prediction based on the optimal 
least-squares regression coefficient to partition the variability into a component related to the 
regression and the residual variability assigned to the Unexplained Mean Square Error.  

In all of these ANOVAs, the MSW or Unexplained  Variability or Mean Square Error (MSE)tells us how much 
more work we have to do to understand the phenomenon we are studying; if the MSE is large after we have 
explained part of the variability using models based on different classifications or regressions, then we still 
have mysteries to probe and to discover in the data.94  

 

94 These terms (MSW, MSE and so on) are used interchangeably in applied statistics; different texts and journals have their preferred usage, but we 
should be ready to recognize all of them, so the text here is deliberately written with several versions of the terms. 
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8.9 Testing for the Equality of Two Means in an Investigation of 
Possible Dishonesty 

There are other tests for evaluating the hypothesis that the means of two samples could be 
as different as they are (or more different) by chance (random sampling) alone. The exact 
choice depends on whether we already know the parametric variances of the populations 
from which the samples are drawn (in which case we use the Normal distribution to 
describe the distribution of differences between two sample means) or if we don’t 
know the parametric variances and have to estimate them based on the sample 
variances (in which case we rely on Student’s-t distribution).  

By far the more common class of tests involves samples with unknown parametric 
variances when the sample variances are comparable. 

Here’s an example of a situation requiring a test for equality of means. 

A computer systems administrator is investigating a possible case of insider 
fraud and needs to know if one of the employees has been spending a 
significantly longer time logged into the accounts payable database over the 
last three weeks compared with the previous three weeks. The reason is that 
the Chief Financial Officer has reported a series of unexplained discrepancies 
in the accounts payable files starting three weeks ago: there seem to be 
payments to nonexistent suppliers starting at that point. Suspicion has fallen 
on the Assistant Comptroller; the Chief Information Security Officer has asked 
for investigation of that employee’s behavior. Has the suspect in fact 
significantly increased the length of his sessions? 

The sysadmin finds the information from the log files shown in Figure 8-10. 

The hypotheses are 

H0: μ1 ≥ μ2  which is sometimes expressed  H0: μ1 - μ2 ≥ 0 

H1: μ1 < μ2  which would be equivalent to  H1: μ1 - μ2 < 0 

Sometimes the symbol  (Greek capital delta) represents the hypothesized difference 
between the parametric means of the two populations from which the samples are 

drawn. When we are testing for the equality of the parametric means,  = μ1 - μ2  = 0.  

  

Figure 8-10. Log-
file data on 
session length for 
suspected 
fraudster. 
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8.10 T-Tests in Data Analysis 

The easiest interface for a t-test is to use the Data | Data Analysis menu shown in Figure 8-11, which brings 
up a menu of options for t-tests. 

The last four functions shown in Figure 8-11 have the following purposes: 

• t-test: Paired Two Sample for Means – used when the same subject is measured twice; e.g., to 
compare effect of a drug treatment by measuring blood hemoglobin concentration before and after 
administration of the dose on each subject rather than simply considering each group to be a random 
sample (discussed later in this course). 

• t-test: Two Sample Assuming Equal Variances – two random samples with parametric variances 
thought to be identical. 

• t-test: Two Sample Assuming Unequal Variances – two random samples with parametric variances 
thought to be different. 

• z-test: Two Sample for Means – two random samples, each with a known parametric variance. 

The first question is whether the observed sample 
variances are consistent with an assumption of 
homoscedasticity for the parametric variances.  

The Data Analysis | Descriptive Statistics tool provides 
results which are shown slightly reformatted in Figure 8-12. 

Next is to use the F-test for equality of two variances to 
test for homoscedasticity using the sample variances 
(12.560 and 14.732). As usual, we can pick the larger 
variance for the numerator and the smaller for the 
denominator so we can use the right-sided probability 
function given by =F.DIST.RT. 

  

Figure 8-11. Data Analysis tools for t-tests of means. 

Figure 8-12. Descriptive statistics for two 
samples. 
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The hypotheses for this test are  

H0: σ2
1 = σ2

2  and H1: σ2
1  σ2

2 

Figure 8-13 shows the results. There is no reason to suspect that the parametric variances are unequal (p = 
0.401ns), so we can choose the equal-variances version of the t-test for quality of means: 

t-Test: Two Sample Assuming Equal Variances. 

 

Figure 8-14 shows the menu and entered data for the 
EXCEL t-Test: Two Sample Assuming Equal 

Variances data-analysis routine.  

The results are unequivocal:  

Because our null and alternative hypotheses are 
asymmetric 

  (H0: μ1 ≥ μ2 and H1: μ1 < μ2),  

we use the one-tail probability (highlighted in bold in 
Figure 8-15) which is unquestionably extremely 
significant (1.555E11). There is virtually no question 
that the suspect has increased the length of his 
sessions significantly.  

  

Figure 8-13. Test for equality of parametric variances in two samples. 

Figure 8-14. Data locations entered into menu for t-test. 

Figure 8-15. Results of t-test for equality of means assuming homoscedasticity. 
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Note that if we had been testing symmetrical hypotheses (H0: μ1 = μ2 and H1: μ1  μ2), the appropriate 
probability would have been the P(T<=t)two-tail figure which, not surprisingly, is exactly twice (3.10E-11) the 
figure we chose (1.55E-11). That probability includes the likelihood that we could observe a difference of this 
magnitude or greater in either direction. 

8.11 Critical Values 

As a note of historical interest, the data analysis routine also provides critical values that demarcate the 
boundaries of the 0.05 “Alpha” stipulated in Figure 8-14.  

The t Critical one-tail value is t05[53] = 1.674 and denotes the value of Student’s t with  

df = (n1 + n2 -2) = (13 + 42 -2) = 53  

where 0.05 of the distribution lies to the left of this critical value. We can verify this assertion using 

=T.DIST(-1.674, 53, 1) =  0.0500  

as expected for the left tail. The same check could use  

=T.DIST.RT(1.674,53) = 0.0500  

for the right tail.. 

Similarly, the t Critical two-tail value represents  

t025[53] = 2.006 

and demarcates 0.025 to the right of 2.006 and 0.025 to the left 
of -2.006 

Again, verifying these assertions using EXCEL functions for 
the left and right tails, respectively, 

=T.DIST(-2.006,53,1) = 0.0250 

=T.DIST.RT(2.006,53) = 0.0250 

These critical values are holdovers from a time when statisticians 
did not have ready access to computers and relied on printed 
tables of probabilities for statistical decisions. Figure 8-16 
shows such a table; users would look up the proabaility for a 
two-tailed critical value along the top and go down the column 
for the critical value for degrees of freedom.95 

Today, few statisticians use statistical tables unless they also like 
to use tables of logarithms, or to perform statistical calculations 
by hand or using a calculator, or to use overhead projectors 
and photocopies on acetates for prepared images in lectures 
instead of computer programs and LCD projectors, or to chisel 
cuneiform symbols on clay tablets instead of using email. 

However, if you are stranded on Pluto without access to your cerebral computational brain implant, having a 
set of statistical tables may allow you to check a published calculation or two.96 

  

 

95 (Rohlf and Sokal 1981) p 81. Used with kind permission of author F. J. Rohlf. 
96 Geeks should note that carrying statistical tables around will not increase your attractiveness to potential dates. 

Figure 8-16. Image of a statistical table 
from a 1981 set of tables. 
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8.12 ANOVA: Single Factor vs T-test for Equality of Means 

The Student’s t-test for equality of means produces results consistent with those of an ANOVA. To 
demonstrate this similarity, Figure 8-17 shows the ANOVA using EXCEL’s Data Analysis routine Anova: 

Single Factor for the same data as the t-test just discussed. 

Students should note the equality of the  

P(T<=t) two-tail = 3.10E-11 from the t-test and the  

P-value = 3.10E-11 in the ANOVA for the F[1,53] = 69.7***. 

ANOVA of this kind always performs a two-tailed F-test for the H0 of equality of means. 

In the t-test and in the ANOVA, the null hypothesis is rejected: the difference between the means is 
extremely statistically significant at the 0.001 level (there is essentially no realistic chance of encountering a 
difference this large or larger by chance alone if the null hypothesis of equality is true) and therefore we 
accept the alternate hypotheses: 

• In the original t-test shown in § 8.10, that the mean session length is longer in the second sample than 
in the first sample (a one-tailed test); 

• In the ANOVA, that the mean session length is different between the samples (a two-tailed test). 

Given that the observed difference is that Y̅2 > Y̅1, we come to the same conclusion as in the t-test: 
the Assistant Comptroller has indeed been spending a lot more time logged into the accounts 
payable database in these last three weeks than in the three weeks before. Maybe it’s time to do some 
more forensic research on the case. 

Figure 8-17. ANOVA for same data as t-test example. Figure 8-18. ANOVA for same data as t-test example. 
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8.13 Testing for Equality of Means Given Parametric Mean and 
Parametric Standard Deviation v Sample Mean 

Sometimes we have such a large amount of historical information about the mean and standard deviation of a 

measurement that we are willing to consider those parametric statistics. In §5.7, we discussed how to compute 

confidence limits based on parametric mean and parametric standard deviation. The same calculations can be 

adapted to test the hypothesis that and observed sample mean and observed sample standard deviation are 

consistent with the null hypothesis. Here are screenshots of the formulas and the calculated values from a 

homework exercise in the QM213 course at Norwich University. 

Figure 8-19. Using parametric mean & standard deviation for an hypothesis test about a sample mean. 
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8.14 Computing a t-test for Equality of Means without Raw Data  

Finally, in case you need it, here is the intimidating general formula for the t-test for equality of two means if 
you don’t have acccess to the raw data but only the means, the sample variances, and the sample sizes. The 

symbol Δ is just the hypothesized difference between the parametric means – usually 0. 

 

Aren’t you glad you use EXCEL? Although there is no instant function for these calculations, as long as you 
label all the steps of your calculations, you will have no problem computing the values step by step and then 
using the =T.DIST.2T function to compute the probability of observed t-value if the null hypothesis were 
true. 

8.15 The T.TEST Function 

For completeness, let’s look at another t-test for the equality of means, this time using raw data and the 
EXCEL =T.TEST function, which requires the array (both columns of data but NOT the headings), the 
number of tails (1 or 2), and the choice of model: 

• Type = 1 for paired comparisons in which the same entities are observed under two different 
circumstances; e.g., if the same glue job were repeated with standard application glue and then with 
molecular transubstantiation glue. There must, naturally, be exactly the same number of observations 
if we are doing a paired comparison. Another typical example is a before/after comparison of 
individual test subjects; e.g., a paired comparison of each person’s weight before and after a month of a 
special diet. 

• Type = 2 for two samples (as in our example of the possibly corrupt Assistant Comptroller) where 
we assume that the parametric variances are equal (homoscedasticity). In our case, lacking any reason 
to do otherwise, we choose this assumption. 

• Type = 3 for two heteroscedastic samples (where we assume that the parametric variances are 
unequal). 

Using the same data as in the t-test of § 8.9 et seq.,  

=T.TEST(A2:A14,B2:B43,1,2) = 1.55E-11 

Which is exactly the same as the result of the one-tailed t-test in §8.10 (Figure 8-15). 

Similarly,   

=T.TEST(A2:A14,B2:B43,2,2) = 3.10E-11 

exactly as in both the two-tailed t-test and in the ANOVA of §8.12 (and Figure 8-17). 

 

 

 

 


