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9 Analyzing Relationships Among Variables 

9.1 Introduction to Analyzing Relations 

There are many cases where we need to discuss more than one aspect of the entities we are interested in 
understanding. For example, in analyzing productivity figures in a factory as part of an operations research 
study, we may collect information about several aspects of each product line beyond just the daily production 
such as 

• Day of the week – maybe production changes systematically during the work week; keeping 
track of exact dates and therefore allowing us to track Mondays, Tuesdays and so on could 
be useful. 

• Shift supervisor – perhaps particular supervisors differ in their effects on productivity; a 
nasty supervisor, for example, might cause resentment among workers and get poorer 
productivity than a good supervisor. Alternatively, perhaps lower production in “Bob’s” shift 
is due to theft orchestrated by Bob! 

• Type of equipment on each production line – maybe specific lines are affected by 
differences in the machinery. 

• Ambient temperature in factory – perhaps differences in productivity can be traced to 
working conditions such as excessive heat during afternoon shifts compared with nighttime 
or morning shifts. 
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Figure 9-1 shows some sample data with a few of these observations. There is no theoretical limit on the level 
of detail that we can collect in scientific and professional studies. What limits our ability to study all aspects of 
reality are such factors as  

• The difficulty or impossibility of 
quantifying specific attributes of reality; 
e.g., there is no easy, simple measure of such 
human attributes as honesty or originality; and 
there is no immediate, simple measure of a 
product’s utility or marketing appeal. 

• Ability to define metrics (ways of 
measuring something); e.g., marketing 
appeal might be measured through studies of 
purchasing habits for that product.  

• The complexity of acquiring the data; 
e.g., a measure that we think might be 
indicative of honesty might require extensive 
testing of every subject, possibly in different 
situations and environments. Similarly, 
measuring a product’s utility might involve 
extensive studies of how consumers actually 
use the product over a period of years. 

• Ability to identify independent factors 
possibly affecting the variable(s) of 
interest; e.g., in a wide range of different 
populations grouped by such factors as age, 
gender, socio-economic status, and so on. 

• The controllability of factors; e.g., it might 
be possible to impose experimental 
conditions on subjects in a study of honesty 
by giving them tasks in a laboratory or via 
computer; it might be much more difficult to 
perform such studies in the real world.  

• Increased costs resulting from increased complexity of data gathering: It’s cheaper to 
weigh bolts to see if they vary in weight than it is to study the marketing benefits of offering five 
different shades of those bolts. 

Such considerations lead to multifactorial analysis. Simple approaches to handling such multifactorial data 
include cross-tabulations (also known as contingency tables), scatterplots for showing two variables at a time, correlation 
coefficients to express the intensity of a relationship between two variables, and regression equations to predict a 
variable’s value as a function of one or more other variables. 

Figure 9-1.Multiple variables in observations 
about production line (first week of data only). 
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9.2  Cross-Tabulations (Contingency Tables) 

Let’s consider the production-line example introduced above. Figure 9-2 shows the first week of collected 
data, with information on the day of week (Monday through Sunday), production line (A, B, C, or D) and 
supervisors (Alice, Bob, Charlie and Darlene). 
As you can see, it’s difficult to make sense of 
these unaggregated data.  

One summary representation, shown in 
Figure 9-2  is three-way cross-tabulation 
(or three-way contingency table) that shows 
production classified by three of the 
variables: it collapses the data by 
combining the different dates and adding 
the production values by day of the week, 
production line (A, B, C, D) and supervisor. 
The table also provides subtotals. 

The table in Figure 9-2 was generated 
using the EXCEL Insert | PivotTable 
function accessible (Figure 9-3). 

 

 

 

 

 

 

 

  

Figure 9-2. Cross-tabulation of production data showing 
breakdown by Day of Week and Supervisor. 

Figure 9-3. Insert | 

PivotTable symbol. 
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Figure 9-2 was generated using the options shown in the PivotTable Field List 
(Figure 9-4). 

 

 

 

 

 

Another representation summarizes production by production line and by 
supervisor. Figure 9-5 shows the PivotTable settings for this arrangement and 
Figure 9-6 shows the resulting table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This table (Figure 9-6Figure 9-5) is a two-way contingency table because it shows counts classified by two 
variables: production line and supervisor. The table includes subtotals by those variables. 

 

 

 

 

 

 

  

Figure 9-4. PivotTable 
settings for three-way cross-
tabulation. 

Figure 9-5.PivotTable settings 
for two-way contingency table. 

Figure 9-6. Two-way contingency table for production line and supervisor. 
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9.3 Filtering Data for Temporary Views 

Another useful EXCEL tool for working with complex tables is the Filter function accessible through the 
Sort & Filter drop-down menu (Figure 9-7). Clicking on the Filter option inserts pull-down menus in the 
columns of the table that one has highlighted.  

Figure 9-8 shows the headings and a few rows resulting 
from highlighting the entire table shown in Figure 9-1 
at the start of §9.2 and selecting the Filter function. 

 

 

Figure 9-9 shows the pull-down menu: 

 

   Figure 9-10 shows the results of clicking on (Select All) to 
remove all the check marks and then clicking only on the 
SAT and SUN checkboxes.  

 

  

Figure 9-7. Sort & Filter menu. 

Figure 9-8. Heading row showing pull-down menu tabs. 

Figure 9-9. Pull-down menu for DoW column. 

Figure 9-10. Filtered subset of table showing only SAT 

and SUN data. 
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9.4 Charts for Contingency Tables 

Two-way contingency tables can be represented graphically using a variety of charts. A popular graph type is 
the vertical bar chart with one variable represented by position along the abscissa and the other by the 
position (and usually color) of a bar in a series clustered over each value of the abscissa variable. In Figure 
9-11, the abscissa shows the days of the week and the clustered bars represent the production lines. Such 
charts are easily created in EXCEL. 

 

 

 

 

Another version of these data is the 
stacked bar chart (Figure 9-12), in which 
the second variable has portions of a 
single bar representing the total for all 
of its values. This particular example 
also uses features of EXCEL such as 
the ability to tilt and rotate three-
dimensional graphs. 

  

Figure 9-11. Clustered bar chart showing production totals for day of 
week and production line 

Figure 9-12. Stacked bar chart for production totals by day of week. 
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Another useful representation is the response surface, which shows a two-dimensional surface combining 
information from two variables versus a third. Figure 9-13 is a response surface for production versus both 
day of week and production line. Such charts can easily be prepared in EXCEL and there are many options 
for enhancing their appearance. In particular, one can rotate the image on any axis to clarify relationships that 
are of interest. 

  
Figure 9-13. Three-variable response-surface chart. 



Statistics in Business, Finance, Management & Information Technology 

Copyright © 2019 M. E. Kabay. All rights reserved.           < statistics_text.docx > Page 9-8 

9.5 Scatterplots and the Intuitive Grasp of 
Relationships 

Often we measure two quantitative variables for the same entities and want 
to see how the data fall out in general terms. For example, Figure 9-14 shows 
data about the rating of a new advertising campaign by people of different 
ages as part of a marketing study to see if the advertisements appeal 
differently to viewers as a function of their age.  

 

 

Figure 9-15 shows the scatterplot derived from these marketing-research data. Each point represents the 
particular combination of consumer age and rating of the advertisements for a specific respondent. These 
figures are easy to create in EXCEL. 

At an intuitive level, a scatterplot in which the dots form a slanted, tight cloud naturally suggests to even a naïve 
viewer that perhaps there is some sort of relationship between the two variables shown. In Figure 9-15, for 
example, the immediate impression is that perhaps the ratings fall as the age of the respondent rises. 

Contrariwise, a formless, wide cloud of dots in a scattergram suggests that perhaps there is no relation 
between the variables. However, without rigorous analysis, such impressions remain just that – impressions 
rather than actionable conclusions. For real-world decisions, we need to have quantitative estimates of the 
strength of the relationships and the probability that we are seeing the results of raw chance in the random 
sampling. 

Proper statistical analyses of these impressions can involve correlation and regression, depending on the 
assumptions of the analysis. Correlation gives us an estimate of the strength of the relationship, if any; 
regression gives us estimates of the precise quantitative nature of the relationship, if any. 

  

Figure 9-14. Data on 
responses to ads and age 
of respondent. 

Figure 9-15. Scatterplot of rating vs age of respondent. 
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9.6 Pearson Product-Moment Correlation Coefficient, r 

The intensity of the relationship between two variables that are both measured independently, and for which 
neither is viewed as a predictor of the other, is measured by an important statistic called the Pearson product-
moment correlation coefficient, r.97 This statistic applies to Normally distributed interval scales; there are other 
forms of correlation coefficient suitable for ordinal scales. 

The notion of independence is important because it can determine whether to represent the relation between 
two variables in a data set in terms of the correlation coefficient, which implies no predictive rule and treats both 
variables as equally free to vary, in contrast with the regression coefficient (discussed in the next section) which 
usually assumes that one of the variables (the independent variable) can be used as a predictor of the other (the 
dependent variable). 

In the example shown in Figure 9-14 and Figure 9-15, on the previous page, we collected data about the age of 
respondents and about their rating of an advertisement. Intuitively, we wouldn’t expect anyone to be interested in 
predicting the age of a respondent by asking them how they feel about an ad; however, it could mean a lot to 
be able to measure the strength of relationship between how people feel about an ad based on their age if one 
wants to reach a particular demographic slice of the population. Judging from the scattergram in Figure 9-15, 
it looks roughly as if the older people liked the ad being tested less than the younger people. The natural, 
spontaneous tendency is to put the age on the abscissa and the response to the ad on the ordinate; that’s a 
typical arrangement: the independent variable goes on the X-axis and the dependent variable goes on the Y-
axis. Reversing the two would look funny in this case, although not necessarily in other cases. 

Consider now a study of the responses to two different advertisements shown in Figure 9-16. Each vertical 
pair (e.g., 1, 1) represents the rating by an individual of their response to each of two ads. 

In this case, there’s no particular reason why we would assign priority to one ad or the other; both are what 
we call independent variables. We can still be 
interested in the intensity of the relationship 
– the association – between these responses, 
but we don’t normally think in terms of 
predicting one from the other. 

Figure 9-17 shows a scatterplot for the 
responses to the two ads. The artificial data 
in this example were constructed to be 
randomly related – and the scatterplot shows 
a typical appearance for such data, with no 
obvious pattern. 

The computation of the product-moment 
correlation coefficient, r, is best left to the 
statistical package. 

  

                                                      

97 Karl Pearson (1857-1936) was one of the founders of modern statistics. (O'Connor and Robertson 2003) 

Figure 9-16. Ratings of two different ads by 28 people. 

Figure 9-17. Scatterplot for paired responses to two ads. 
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EXCEL has a function for computing r: =CORREL(array1, array2) which instantly provides the coefficient. 
In our current example, r = 0.0.156246 ≈ 0.156. 

Notice that in this case, it doesn’t matter which variable is selected for which axis; we say that these are two 
independent variables. 

The correlation coefficient r has properties that are easy to understand: 

• Two variables with no relationship between them at all have a correlation coefficient r = 0.  

• Two variables in which a larger value of one variable is perfectly associated with a correspondingly 
larger value of the other have an r = +1.  E.g., if we calculate r for the height of individuals measured 
in inches and then measured in centimeters, the data should have r = 1 because knowing one 
measurement should allow computation of the other measurement without error. 

• If a larger value of one variable is perfectly associated with a systematically smaller value of the other, 
the r = -1. For example, imagine giving children bags of candies containing exactly 20 candies to start 
with; in this silly situation, calculating the r for the number of candies eaten and the number of 
candies left should produce r = -1 because the more candies are eaten, the fewer are left – and there 
should be zero error in the data. 

• In both of these extremes, knowing the value of one of the variables allows perfect computation of 
the value of the other variable. We say that there is no unexplained error in the relationship. 
However, if we introduce errors, r will decline from +1 or increase from -1. For example, if we 
measure the height of a subject with a laser system correct to 0.01cm but measure the height in 
inches using a piece of string with only whole numbers of inches marked on the string, it’s likely that 
the correlation coefficient will be less than perfect. Similarly, if a three-year-old is counting the 
candies that are left (and perhaps eating some surreptitiously), the data for the candy correlation may 
very well produce an r > -1. 

9.7 Computing the Correlation Coefficient Using EXCEL 

As mentioned in the previous section, the function =CORREL(array1, array2) mentioned in the previous 
section computes r with no additional information and no options. 

However, the Data Analysis function 
Correlation offers more options than the 
simple function when we need to compute r 
for more than one pair of variables. It’s 
especially useful because it calculates 
correlations for all possible pairs of the data. 

For example, imagine that a study (Figure 
9-18) of the percentage of foreign 
outsourcing for ten companies is tested for a 
possible correlation with the frequency of 
industrial espionage expressed in relation to 
the number of employees in the company. In 
addition, the researchers also record the 
percentage profitability over the past decade 
for each company.98 

                                                      

98 These are made-up figures: do not interpret them as indicating anything real – they are created only for the purpose of illustration in this text. 

Figure 9-18. Outsourcing, espionage and profitability. 
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Using the Correlation function from the Data Analysis menu (Figure 9-19),  

 

we generate a simple table of results showing the correlation coefficients r for each pair of variables in this 
made-up example. The default output lacks effective formatting, as you can see in Figure 9-20, where the 
columns are too narrow to display the column headings. 

However, some simple formatting (e.g., highlighting the columns and double-clicking any of the column 
boundaries – and the same for the heading row) produces a more usable report (Figure 9-21). 

For example, the correlation coefficient r for Percentages Overseas Outsourcing and Frequency of Industrial 
Espionage/1000 Employees is 0.533 and r for the Outsourcing percentage and 10-year profitability is about -0.63. 

Figure 9-19. Entering ranges and options into Correlation menu. 

Figure 9-20. Unformatted output from Data Analysis | Correlation tool. 

Figure 9-21. More readable formatted output from Data Analysis | Correlation tool. 
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9.8 Testing the Significance of the Correlation Coefficient 

How do we know if a sample’s correlation coefficient (r) is consistent with the hypothesis that the parametric 
correlation (ρ)99 has a particular value? As usual, it’s possible to compute a test statistic based on a correlation 
coefficient (r) based on a sample of size n that is distributed as a Student’s-t statistic: 

t[ν] = (r – ρ)/sr 

where 

t[ν] = the test statistic with ν = n – 2 degrees of freedom 

sr = standard error of the correlation coefficient: 

𝑠𝑟 = √(1 – 𝑟2)/(n –  2) 

Thus 

𝑡(𝑛−2) = (𝑟 −  𝜌)/√(1 – 𝑟2)/(n –  2) 

 

If our hypotheses are H0: ρ = 0 and H1: ρ  , then 

𝑡(𝑛−2) = 𝑟/√(1 – 𝑟2)/(n –  2) 
In the example discussed in §9.7, n = 10 and the correlation coefficient for overseas outsourcing (o) and 
industrial espionage (e) was roe = 0.533.  

The test for correlation between outsourcing and espionage is thus 

toe[8] = 0.533 /[ √(1 – 0.5332)/8] = 5.034 

and the calculation of the two-tailed probability that the null hypothesis is true is 

=T.DIST.2T(toe,8) = 0.001*** 

which is extremely significant. We can reasonable reject the null hypothesis; the positive correlation between 
overseas outsourcing and industrial espionage appears to be real.100 

The negative correlations (outsourcing and profitability; espionage and profitability) need to be converted 
using the absolute value function (ABS). The t-tests are 

top[8] = -0.627 /[ √(1 – 0.6272)/8] = -5.927 

and the calculation of the two-tailed probability that the null hypothesis is true is 

=T.DIST.2T(ABS(top),8) = 0.0004*** 

so the negative correlation between outsourcing and profitability is extremely significant too. 

Finally, the correlation between industrial espionage and profitability, -0.761, has a tep = -0.761 with p(H0) = 
0.0001***. So that correlation is extremely significant, too. 

  

                                                      

99 The Greek symbol is rho which corresponds to our letter r. See §7.3 on page 7-3. 
100 Remember this is a completely made-up example! The example does not speak to the issue of outsourcing and espionage or anything else in the real 
world. 
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9.9 Coefficient of Determination, r2 

A valuable aspect of the correlation coefficient r is that its square, r2, known as the coefficient of determination, 
tells us what proportion of the variation in one of the variables can be explained by the other variable. For example,  

• If we learn that the correlation coefficient between the incidence of a type of hacker attack on a 
network and the occurrence of disk errors on the network disk drives is r = 0.9, then r2 = 0.81 and 
we can assert that in this study, 81% of the variation in one of the variables may be explained or 
accounted for by variations in the other. More frequent hacker attacks are positively associated with 
damaged disk drives; damaged disk drives are associated with a higher frequency of hacker attacks. 
The 81% figure based on r2 implies that if we were to define one of the variables as an independent 
variable and the other as a dependent variable, we could predict the dependent variable with about 81% 
of the total variance explained by knowing the value of the dependent variable and 19% left 
unexplained. 

• In our made-up example about outourcing, espionage and profitability (§9.7), the values of the 
correlation coefficients can easily be squared in EXCEL to show the coefficients of determination: 

Too often, you will hear a journalist or some other statistically naïve person asserting that “the correlation 
between A and B was 60%, which implies a strong relationship between A and B.” Well, not really: r = 0.6 
means r2 = 0.36 or in other words, that only 36% of the variation in A can be explained by knowing the value 
of B or vice versa. All the rest of the variation is unexplained variance. Always mentally square correlation 
coefficients to estimate the coefficient of determination when you are told about correlations. 

Two factors may be positively or negatively correlated because they are both determined to some extent by a 
third, unmeasured factor. Keep in mind is that correlation does not imply or prove causation in either direction. For 
example, 

• Just because weight is correlated with age does not mean that weight determines age – or, for that 
matter, that age determines weight.  

• In the outsourcing/espionage/profitability model, there is no implication of causality one way or 
another.  

• And although studies may find a positive correlation between playing violent video games and 
having aggressive thoughts, the correlation does not mean that playing violent games necessarily 
causes the increase in aggressivity or that increased aggressivity causes an increase in playing violent 
video games.101 

  

                                                      

101 (Anderson and Dill 2000) 

Figure 9-22. Coefficients of determination. 
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9.10 Linear Regression in EXCEL 

Sometimes one of the variables in a two-variable data set has been deliberately 
chosen (the independent variable) and the other varies without imposed controls (the 
dependent variable). For example, Figure 9-23 shows the results of an study of the 
amount of money spent in a month on Internet advertising at Urgonian 
Corporation and the corresponding monthly sales of the product advertised in the 
year 2125.  

The sales figures are not usually directly under our control (assuming that we 
aren’t selling out our entire production every week) but the amount we spend on 
advertising is under our control (assuming our marketing manager is not using a 
Ouija board to determine the spending). This situation is a classic Model I regression 
case in which the X variable – the independent variable – will be the advertising 
budget and the Y value – the dependent variable – will be the sales figures.  

In graphing these data, one can choose the Insert | Scatter option: 

 

 

 

 

 

 

 

 

This selection generates a simple XY chart (Figure 9-26) which we can then modify to include a regression 
line and regression equation: 

 

 

  

Figure 9-23. Internet 
ads and sales at 
Urgonian Corporation 
in 2125. 

Figure 9-24. Creating a scatterplot. 
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Figure 9-26. Simple XY plot. 

Figure 9-25. Simple regression without line.. 
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Click on the chart and then use Chart Tools | Design to select a version of the chart that shows a linear 
regression (top row, highlighted with green dot in Figure 9-27):102 

Instantly, the graph is converted to the form shown in Figure 9-28: 

The chart needs additional work, such as labeling the axes and adding a title, but it’s a quick and easy way to 
show the linear regression line without additional computation. 

But what if we want to see the regression equation? We have another option.  

                                                      

102 The green dot does not appear in Excel; it was added in creating the figure. 

Figure 9-27. Choosing Layout 3 to show regression line in existing graph. 
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Figure 9-28. Conversion to Type 3 XY plot showing regression line added to raw data. 
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Using Layout 9, shown with the added green dot in Figure 9-29, we can instantly generate a graph that 
includes the regression equation and the coefficient of determination for the data: 

The results (Figure 9-31) are a start: 

Moving the equation to a more readable area of the chart, stretching the chart sideways, and adding or 
improving titles, we end up with a presentable representation (Figure 9-30) that includes the regression 
equation and the coefficient of determination (“R2”):  

Figure 9-29. Choosing regression line with equation for graph. 

y = 1.5116x + 247997
R² = 0.3979
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Figure 9-31. Initial chart produced using Layout 9. 

y = 1.5116x + 247997
R² = 0.3979
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Figure 9-30. Chart modified for better readability and with axis labels and better title. 
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9.11 ANOVA with Linear Regression 

Typically, we represent the best-fit linear regression model as 

Ŷ = a + bX +  
where 

Ŷ is the estimated value of the dependent variable for a given independent value X; 

a   is the Y-intercept, or the value of Y for X = 0; 

b is the regression coefficient, or the amount Y rises for a unit increment in X; 

  is the residual error, also called the unexplained error – a measure of the average (squared) 
difference between the predicted values and the observed values. 

Figure 9-32 shows the pop-up panel for Regression in the Data Analysis section of EXCEL 2010.  

For this demonstration, the Regression menu includes the following settings:  

Figure 9-32. Selecting the Regression tool in Data Analysis 

Figure 9-33. Regression menu settings for demonstration. 
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Figure 9-34 shows the results of the Regression function, including the ANOVA with linear regression table 
(labeled simply ANOVA in the figure).  

The regression equation coefficients are 

a = 247,997 (the Intercept shown in the bottom table in cell E17) and  

b = 1.51 (the coefficient called “Internet Ads” positioned in cell E22) so the predictive equation 
(without the error term) is 

 Ŷ = 247,997 + 1.51X 

In the Regression Statistics section of the output in Figure 9-34, the key statistic of interest in this course is 
R Square – the coefficient of determination, r2 (§0) – which is the variability explained by the regression 
(Regress SS) as a proportion of the total variability (Total SS): 0.398 or 39.8%. 

The ANOVA section shows us that F[1,19] = MSregression / MSresidual = 12.554**. The regression is highly 
significant (p(H0: ρ=0) = 0.00217) at the 0.01 level of significance. 

The last section of the output includes Coefficients: the Y-intercept (a) = 247,997. That represents the 
predicted sales with zero Internet ads. The 95% confidence limits for a are 175,777 and 320,217. Because the 
menu in Figure 9-33 includes specification of 99% confidence limits, those are also provided (149,280 and 
346,714). These values represent the estimate of how much in sales would occur with zero Internet ads. 

The slope (b) is 1.512 (the Coefficient in the second row, listing the statistics for Internet Ads). The P-value is 
exactly what is shown in cell I12 of the ANOVA table (2.17E-03) and the confidence limits for b are also 
shown: 0.619 and 2.405 for the 95% confidence limits; 0.291 and 2.732 for the 99% confidence limits. These 
values represent the change in expected sales as a proportion of expenditures in Internet ads. Thus at the 
point estimate b = 1.512, the model predicts that every expenditure of a dollar in Internet ads will generate 
sales of $1.512 or 151.2% return on investment. On the other hand, the confidence limits also warn that the 
uncertainty left in the regression (r2 = 39.8%) means that it is also possible that the return on investment 
(slope) could be as low as 0.291 or 29.1%. This result indicates that there is a 99% probability that we are 
correct in asserting that the return on investment in Internet ads will meet or exceed 29.1%. 

Figure 9-34. ANOVA with linear regression for Sales vs Advertising data. 
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9.12 Predicted Values in Linear Regression & Confidence Limits 

It’s easy to generate the predicted values of Y for given values of X by plugging 
the X-values into the best-fit linear regression equation. Figure 9-35 shows the 
predicted values of sales for the original list of Internet Ad expenditures 
(Figure 9-23) using Y-intercept a ($247,997) and slope b (1.512) calculated by 
the Data Analysis | Regression tool.  

Suppose we want to estimate the sales predicted for expenditures of $150,000 
on Internet ads. We calculate  

Ŷ = $247,997 + 1.512*$150,000 = $474,734 

A more involved calculation is to compute the upper and lower (1 – α) 

confidence limits for a predicted Y (Ŷ) for a given X (symbolized by Xi). This 
measure of uncertainty is smallest at the center of the regression, where the 

selected Xi is the mean, X̅. As Xi moves further away from the mean, the 
uncertainty of the prediction increases. 

The standard error of Ŷ is symbolized sŶ and is a function of the given value of 

Xi. it is defined as follows: 

• MSresidual is the error mean square from the ANOVA; 

• n is the sample size; 

• Xi is the specific value of the independent variable, X for which we 
want to computer the predicted value Ŷ and its confidence limits; 

• X̅ is the mean of X; 

• s2
x is the variance of the values of X in the dataset; can be calculated using =VAR.P(range); 

unusually, we are using VAR.P instead of VAR.S because it provides the value needed in the 
computation. 

Our example has the following values for these components in the ANOVA with regression for our example:  

• MSresidual = 3,503,559,491 

• n = 21 

• Xi = 150,000 

• X̅ = 75,000 

• s2
x = 916,666,667 

The calculation yields sŶ = 34,505. 

The distribution of Ŷ follows Student’s-t with ν = n – 2 degrees of freedom. 

  

Figure 9-35. Predicted 
sales as function of 

Internet ad expenditures. 
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Computation of the confidence limits for Ŷ can use the =CONFIDENCE.T(alpha, standard_dev, size) 
function from EXCEL 2010. The only wrinkle is that =CONFIDENCE.T is defined for computing 
confidence limits of the mean, and it therefore assumes that the degrees of freedom are size – 1. Because the 
degrees of freedom of sŶ are ν = n – 2, we have to trick the function by entering the size parameter as n – 1 to 

force the function to use ν = n – 2 for its calculation.  

The =CONFIDENCE.T value is one-half the confidence interval. Thus lower (L1) and upper (L2) (1 – α) confidence 
limits are 

L1 = Ŷ – CONFIDENCE.T(α, sŶ, n-1) 

L2 = Ŷ + CONFIDENCE.T(α, sŶ, n-1) 
In our example, the 95% confidence limits for the estimated value Ŷ = $474,734 for Xi = $150,000 are 

L1 = $458,585 

L2 = $490,883 

After calculating the upper and lower 95% confidence limits for all the values in the original data chart, it’s easy to create 

a chart illustrating the bowed (parabolic) nature of the upper and lower confidence limits. Figure 9-36shows the modest 
widening of the confidence limits around the estimated sales. The values include Internet Ad expenditures reaching up 
to $250,000 to demonstrate the curve of the confidence limits. The circular inset expands the right-hand side of the 
predictions to illustrate the divergence between upper bound (blue) expected value (green) and lower bound (red). 

 

  

Figure 9-36. Confidence limits get wider away from the mean. 
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