
IA Includes Software Development 
 

by M. E. Kabay, PhD, CISSP-ISSMP 
Professor of Computer Information Systems 

School of Business & Management 
Norwich University, Northfield VT 

 
Sometimes we lose sight of the wide reach of information assurance (IA). In class discussions in the 
Management of IA course< http://www.mekabay.com/courses/academic/norwich/is342/index.htm > at 
Norwich University< http://www.norwich.edu >, students recently discussed how software development 
and quality assurance play a role in IA. 
 
One of the areas that our students study in their software engineering courses< 
http://www.mekabay.com/courses/academic/norwich/is301/ > is development strategies< 
http://www.mekabay.com/courses/academic/norwich/is301/04_ch4.ppt >. The traditional system 
development life cycle (SDLC) puts a great deal of time and effort into the project definition phases; systems 
analysts must interact with users, encourage them to define their needs, define functional requirements (these 
two phases can be called the requirements elicitation), get the functional specifications approved by the users, 
and then design and build the systems to meet those requirements. The SDLC includes system testing and 
system documentation. 
 
An alternative is agile development< http://www.allaboutagile.com/10-key-principles-of-agile-software-
development/ >, which can include rapid application development (RAD< 
http://www.cs.bgsu.edu/maner/domains/RAD.htm >) and joint application development (JAD< 
http://www.umsl.edu/~sauterv/analysis/JAD.html >). In these methods< 
http://www.mekabay.com/courses/academic/norwich/is301/23_ch17.ppt >, analysts follow the 
requirements elicitation phase by model-building (prototypes). Prototypes< 
http://csweb.cs.bgsu.edu/maner/domains/Proto.htm > can be created with simple development tools that 
allow users to see partial or even simulated user interfaces with some of their required functions enabled by 
fourth-generation languages (4GLs) or application generators. Faced with a model or simulation of functions 
that can meet their needs – at least, in part – users often respond with corrections and clarifications, thus 
helping analysts understand and document user needs more thoroughly. Analysts can thus generate improved 
definitions of the functional requirements and support designers and programmers in building systems that 
better meet the organization’s needs. In addition, agile development methodologies can provide a significant 
degree of preliminary functionality early in the development cycle, immediately meeting some of the most 
common needs within weeks or months instead of forcing everyone to wait for all the functionality to be 
released in the months or even years typically forced by the traditional SDLC. 
 
Decades ago, I defined a rule to describe the effect on users of seeing a model that simulates part of a new 
system: the availability of a tool changes the perception of the possible. I defined that principle partly 
because of an incident that occurred in 1986, when I was hired to help reorganize the information technology 
operations of a clothing factory, with special attention on performance and technical support. As I was 
walking through the office with the vice-president (VP) of information technology (IT), I noticed something 
unusual off to one side of the office: there was an employee with a thick stack of 132-character by 88-line 
computer printouts working with a hand calculator. I asked the VP if we could go talk to him and then asked 
him politely what he was doing. He said he was calculating subtotals based on the printouts. “Ah,” I said, 
“and how often do you do that?” He said he did it every month. “How long does it take you?” A few hours. 
“And how long have you been doing that?” About three years. Finally, I asked, “Have you ever asked your IT 
department to include the subtotals in your report?” 
 
The employee looked at me in blank astonishment. 

http://www.mekabay.com/courses/academic/norwich/is342/index.htm
http://www.norwich.edu/
http://www.mekabay.com/courses/academic/norwich/is301/
http://www.mekabay.com/courses/academic/norwich/is301/04_ch4.ppt
http://www.allaboutagile.com/10-key-principles-of-agile-software-development/
http://www.allaboutagile.com/10-key-principles-of-agile-software-development/
http://www.cs.bgsu.edu/maner/domains/RAD.htm
http://www.umsl.edu/~sauterv/analysis/JAD.html
http://www.mekabay.com/courses/academic/norwich/is301/23_ch17.ppt
http://csweb.cs.bgsu.edu/maner/domains/Proto.htm


 
“They can DO that?!?” 
 
One point of the story is that everyone in IT has to focus on user needs and actively interact with users not 
only to ask them about their perceived needs but also to stimulate cooperation in thinking clearly about all the 
functional requirements of IT systems, whether they are currently recognized or not. IT staff are supposed to 
be the experts who are aware of requirements that the users may never have thought about; one of the key 
areas where users who are focused on their own work either forget to define requirements or are completely 
unaware of them is security. 
 
Security requirements – protection of confidentiality, control, integrity, authenticity, availability and utility of 
information – must be included in the functional specifications of every IT system. Ignoring security 
considerations for software is like ignoring safety considerations in automobiles: it’s unprofessional and 
potentially dangerous. The Risks Forum Digest has documented thousands of systems over more than two 
decades in which security considerations were either ignored, poorly defined, or poorly implemented. The 
year 2000 (Y2K) problem illustrated far-reaching consequences of failure to plan for continued utility and 
integrity in computer software – thousands of programs all over the world were at risk of failing because they 
used two-digit date fields that assumed that all dates would be in the 20th century only. 
 
By now, most readers are surely aware that security must be built into systems from the very first, not simply 
added in as afterthoughts. 
 
As programmers build the systems that meet user requirements, they must apply thorough software quality 
assurance (SQA) techniques. Many of the problems that SQA tries to find include errors that can profoundly 
affect security. A brief list includes 

 Initialization Errors 

 Logic Flow Errors 

 Calculation Errors 

 Boundary Condition Violations 

 Parameter Passing Errors 

 Race Conditions 

 Load Conditions 

 Resource Exhaustion 

 Interapplication Conflicts 

 Other Technical Errors 

 Regulatory Compliance Considerations 
 
For details of these issues, readers are invited to download the PDF or PPTX versions of our class notes, 
which are based on Chapter 39 of the Computer Security Handbook, 5th Edition< 
http://www.amazon.com/Computer-Security-Handbook-2-Set/dp/0471716529 >, “Software Development 
and Quality Assurance,” by John Mason, Jennifer Hadley, and Diane E. Levine. 
 
In the next column, I’ll review how patch management plays a critical role in information assurance. 
 
* * * 
 
M. E. Kabay,< mailto:mekabay@gmail.com > PhD, CISSP-ISSMP, specializes in security and operations 

management consulting services and teaching. He Professor of Computer Information Systems in the School 

of Business and Management at Norwich University. Visit his Website for white papers and course 

materials.< http://www.mekabay.com/ > 

http://www.amazon.com/Computer-Security-Handbook-2-Set/dp/0471716529
mailto:mekabay@gmail.com
http://www.mekabay.com/


Copyright  2011 M. E. Kabay. All rights reserved. Permission is hereby granted to InfoSec Reviews to post this 
article on the InfoSec Perception Web site in accordance with the terms of the Agreement in force between 
InfoSec Reviews and M. E. Kabay. 
 


